92 research outputs found
Constitutive Expression of PU.1 in Fetal Hematopoietic Progenitors Blocks T Cell Development at the Pro-T Cell Stage
AbstractThe essential hematopoietic transcription factor PU.1 is expressed in multipotent thymic precursors but downregulated during T lineage commitment. The significance of PU.1 downregulation was tested using retroviral vectors to force hematopoietic precursors to maintain PU.1 expression during differentiation in fetal thymic organ culture. PU.1 reduced thymocyte expansion and blocked development at the pro-T cell stage. PU.1-expressing cells could be rescued by switching to conditions permissive for macrophage development; thus, the inhibition depends on both lineage and developmental stage. An intact DNA binding domain was required for these effects. PU.1 expression can downregulate pre-TΞ±, Rag-1, and Rag-2 in a dose-dependent manner, and higher PU.1 levels induce Mac-1 and Id-2. Thus, downregulation of PU.1 is specifically required for progression in the T cell lineage
Subversion of T lineage commitment by PU.1 in a clonal cell line system
Specification of mammalian T lymphocytes involves prolonged developmental plasticity even after lineage-specific gene expression begins. Expression of transcription factor PU.1 may maintain some myeloid-like developmental alternatives until commitment. Commitment could reflect PU.1 shutoff, resistance to PU.1 effects, and/or imposition of a suicide penalty for diversion. Here, we describe subclones from the SCID.adh murine thymic lymphoma, adh.2C2 and adh.6D4, that represent a new tool for probing these mechanisms. PU.1 can induce many adh.2C2 cells to undergo diversion to a myeloid-like phenotype, in an all-or-none fashion with multiple, coordinate gene expression changes; adh.6D4 cells resist diversion, and most die. Diversion depends on the PU.1 Ets domain but not on known interactions in the PEST or Q-rich domains, although the Q-rich domain enhances diversion frequency. Protein kinase C/MAP kinase stimulation can make adh.6D4 cells permissive for diversion without protecting from suicide. These results show distinct roles for regulated cell death and another stimulation-sensitive function that establishes a threshold for diversion competence. PU.1 also diverts normal T-cell precursors from wild type or Bcl2-transgenic mice to a myeloid-like phenotype, upon transduction in short-term culture. The adh.2C2 and adh.6D4 clones thus provide an accessible system for defining mechanisms controlling developmental plasticity in early T-cell development
Intra- and Inter-cellular Rewiring of the Human Colon during Ulcerative Colitis
Genome-wide association studies (GWAS) have revealed risk alleles for ulcerative colitis (UC). To understand their cell type specificities and pathways of action, we generate an atlas of 366,650 cells from the colon mucosa of 18 UC patients and 12 healthy individuals, revealing 51 epithelial, stromal, and immune cell subsets, including BEST4(+) enterocytes, microfold-like cells, and IL13RA2(+)IL11(+) inflammatory fibroblasts, which we associate with resistance to anti-TNF treatment. Inflammatory fibroblasts, inflammatory monocytes, microfold-like cells, and T cells that co-express CD8 and IL-17 expand with disease, forming intercellular interaction hubs. Many UC risk genes are cell type specific and coregulated within relatively few gene modules, suggesting convergence onto limited sets of cell types and pathways. Using this observation, we nominate and infer functions for specific risk genes across GWAS loci. Our work provides a framework for interrogating complex human diseases and mapping risk variants to cell types and pathways.Peer reviewe
Recommended from our members
Syncytiotrophoblast extracellular vesicles from pre-eclampsia placentas differentially affect platelet function
Pre-eclampsia (PE) complicates around 3% of all pregnancies and is one of the most common causes of maternal mortality worldwide. The pathophysiology of PE remains unclear however its underlying cause originates from the placenta and manifests as raised blood pressure, proteinuria, vascular or systemic inflammation and hypercoagulation in the mother. Women who develop PE are also at significantly higher risk of subsequently developing cardiovascular (CV) disease. In PE, the failing endoplasmic reticulum, oxidative and inflammatory stressed syncytiotrophoblast layer of the placenta sheds increased numbers of syncytiotrophoblast extracellular vesicles (STBEV) into the maternal circulation. Platelet reactivity, size and concentration are also known to be altered in some women who develop PE, although the underlying reasons for this have not been determined. In this study we show that STBEV from disease free placenta isolated ex vivo by dual placental perfusion associate rapidly with platelets. We provide evidence that STBEV isolated from normal placentas cause platelet activation and that this is increased with STBEV from PE pregnancies. Furthermore, treatment of platelets with aspirin, currently prescribed for women at high risk of PE to reduce platelet aggregation, also inhibits STBEV-induced reversible aggregation of washed platelets. Increased platelet reactivity as a result of exposure to PE placenta derived STBEVs correlates with increased thrombotic risk associated with PE. These observations establish a possible direct link between the clotting disturbances of PE and dysfunction of the placenta, as well as the known increased risk of thromboembolism associated with this condition
Single nucleotide polymorphisms unravel hierarchical divergence and signatures of selection among Alaskan sockeye salmon (Oncorhynchus nerka) populations
<p>Abstract</p> <p>Background</p> <p>Disentangling the roles of geography and ecology driving population divergence and distinguishing adaptive from neutral evolution at the molecular level have been common goals among evolutionary and conservation biologists. Using single nucleotide polymorphism (SNP) multilocus genotypes for 31 sockeye salmon (<it>Oncorhynchus nerka</it>) populations from the Kvichak River, Alaska, we assessed the relative roles of geography (discrete boundaries or continuous distance) and ecology (spawning habitat and timing) driving genetic divergence in this species at varying spatial scales within the drainage. We also evaluated two outlier detection methods to characterize candidate SNPs responding to environmental selection, emphasizing which mechanism(s) may maintain the genetic variation of outlier loci.</p> <p>Results</p> <p>For the entire drainage, Mantel tests suggested a greater role of geographic distance on population divergence than differences in spawn timing when each variable was correlated with pairwise genetic distances. Clustering and hierarchical analyses of molecular variance indicated that the largest genetic differentiation occurred between populations from distinct lakes or subdrainages. Within one population-rich lake, however, Mantel tests suggested a greater role of spawn timing than geographic distance on population divergence when each variable was correlated with pairwise genetic distances. Variable spawn timing among populations was linked to specific spawning habitats as revealed by principal coordinate analyses. We additionally identified two outlier SNPs located in the major histocompatibility complex (MHC) class II that appeared robust to violations of demographic assumptions from an initial pool of eight candidates for selection.</p> <p>Conclusions</p> <p>First, our results suggest that geography and ecology have influenced genetic divergence between Alaskan sockeye salmon populations in a hierarchical manner depending on the spatial scale. Second, we found consistent evidence for diversifying selection in two loci located in the MHC class II by means of outlier detection methods; yet, alternative scenarios for the evolution of these loci were also evaluated. Both conclusions argue that historical contingency and contemporary adaptation have likely driven differentiation between Kvichak River sockeye salmon populations, as revealed by a suite of SNPs. Our findings highlight the need for conservation of complex population structure, because it provides resilience in the face of environmental change, both natural and anthropogenic.</p
ST2 and IL-33 in Pregnancy and Pre-Eclampsia
Normal pregnancy is associated with a mild systemic inflammatory response and an immune bias towards type 2 cytokine production, whereas pre-eclampsia is characterized by a more intense inflammatory response, associated with endothelial dysfunction and a type 1 cytokine dominance. Interleukin (IL)-33 is a newly described member of the IL-1 family, which binds its receptor ST2L to induce type 2 cytokines. A soluble variant of ST2 (sST2) acts as a decoy receptor to regulate the activity of IL-33. In this study circulating IL-33 and sST2 were measured in each trimester of normal pregnancy and in women with pre-eclampsia. While IL-33 did not change throughout normal pregnancy, or between non-pregnant, normal pregnant or pre-eclamptic women, sST2 was significantly altered. sST2 was increased in the third trimester of normal pregnancy (p<0.001) and was further increased in pre-eclampsia (p<0.001). This increase was seen prior to the onset of disease (p<0.01). Pre-eclampsia is a disease caused by placental derived factors, and we show that IL-33 and ST2 can be detected in lysates from both normal and pre-eclampsia placentas. ST2, but not IL-33, was identified on the syncytiotrophoblast layer, whereas IL-33 was expressed on perivascular tissue. In an in vitro placental perfusion model, sST2 was secreted by the placenta into the βmaternalβ eluate, and placental explants treated with pro-inflammatory cytokines or subjected to hypoxia/reperfusion injury release more sST2, suggesting the origin of at least some of the increased amounts of circulating sST2 in pre-eclamptic women is the placenta. These results suggest that sST2 may play a significant role in pregnancies complicated by pre-eclampsia and increased sST2 could contribute to the type 1 bias seen in this disorder
Syncytiotrophoblast Microvesicles Released from Pre-Eclampsia Placentae Exhibit Increased Tissue Factor Activity
Background: Pre-eclampsia is a complication of pregnancy associated with activation of coagulation. It is caused by the placenta, which sheds increased amounts of syncytiotrophoblast microvesicles (STBM) into the maternal circulation. We hypothesized that STBM could contribute to the haemostatic activation observed in pre-eclampsia. Methodology/Principal Findings: STBM were collected by perfusion of the maternal side of placentae from healthy pregnant women and women with pre-eclampsia at caesarean section. Calibrated automated thrombography was used to assess thrombin generation triggered by STBM-borne tissue factor in platelet poor plasma (PPP). No thrombin was detected in PPP alone but the addition of STBM initiated thrombin generation in 14/16 cases. Pre-eclampsia STBM significantly shortened the lag time (LagT, P = 0.01) and time to peak thrombin generation (TTP, P = 0.005) when compared to normal STBM. Blockade of tissue factor eliminated thrombin generation, while inhibition of tissue factor pathway inhibitor significantly shortened LagT (p = 0.01) and TTP (P,0.0001), with a concomitant increase in endogenous thrombin potential. Conclusions/Significance: STBM triggered thrombin generation in normal plasma in a tissue factor dependent manner, indicating that TF activity is expressed by STBM. This is more pronounced in STBM shed from pre-eclampsia placentae. As more STBM are shed in pre-eclampsia these observations give insight into the disordered haemostasis observed in thi
Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial
Background
Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy
- β¦