2,808 research outputs found
A multiwavelength numerical model in support of quantitative retrievals of aerosol properties from automated lidar ceilometers and test applications for AOT and PM10 estimation
Abstract. The use of automated lidar ceilometer (ALC) systems for the
aerosol vertically resolved characterization has increased in recent
years thanks to their low construction and operation costs and their
capability of providing continuous unattended measurements. At the same time
there is a need to convert the ALC signals into usable geophysical
quantities. In fact, the quantitative assessment of the aerosol properties
from ALC measurements and the relevant assimilation in meteorological
forecast models is amongst the main objectives of the EU COST Action TOPROF
("Towards operational ground-based profiling with ALCs, Doppler lidars and
microwave radiometers for improving weather forecasts"). Concurrently, the E-PROFILE program of the European
Meteorological Services Network (EUMETNET) focuses on the harmonization of
ALC measurements and data provision across Europe. Within these frameworks,
we implemented a model-assisted methodology to retrieve key aerosol
properties (extinction coefficient, surface area, and volume) from elastic
lidar and/or ALC measurements. The method is based on results from a large
set of aerosol scattering simulations (Mie theory) performed at UV, visible,
and near-IR wavelengths using a Monte Carlo approach to select the input
aerosol microphysical properties. An average "continental aerosol type"
(i.e., clean to moderately polluted continental aerosol conditions) is
addressed in this study. Based on the simulation results, we derive mean
functional relationships linking the aerosol backscatter coefficients to the
abovementioned variables. Applied in the data inversion of single-wavelength
lidars and/or ALCs, these relationships allow quantitative determination of
the vertically resolved aerosol backscatter, extinction, volume, and surface
area and, in turn, of the extinction-to-backscatter ratios (i.e., the
lidar ratios, LRs) and extinction-to-volume conversion factor
(cv) at 355, 532, and 1064 nm. These variables provide valuable
information for visibility, radiative transfer, and air quality applications.
This study also includes (1) validation of the model simulations with real
measurements and (2) test applications of the proposed model-based ALC
inversion methodology. In particular, our model simulations were compared to
backscatter and extinction coefficients independently retrieved by Raman
lidar systems operating at different continental sites within the European
Aerosol Research Lidar Network (EARLINET). This comparison shows good
model–measurement agreement, with LR discrepancies below 20 %. The
model-assisted quantitative retrieval of both aerosol extinction and volume
was then tested using raw data from three different ALCs systems
(CHM 15k Nimbus), operating within the Italian Automated LIdar-CEilometer
network (ALICEnet). For this purpose, a 1-year record of the ALC-derived
aerosol optical thickness (AOT) at each site was compared to direct AOT
measurements performed by colocated sun–sky photometers. This comparison
shows an overall AOT agreement within 30 % at all sites. At one site, the
model-assisted ALC estimation of the aerosol volume and mass (i.e.,
PM10) in the lowermost levels was compared to values measured at
the surface level by colocated in situ instrumentation. Within this
exercise, the ALC-derived daily-mean mass concentration was found to
reproduce the corresponding (EU regulated) PM10 values measured by
the local air quality agency well in terms of both temporal variability and
absolute values. Although limited in space and time, the good performances of
the proposed approach suggest it could possibly
represent a valid option to extend the capabilities of ALCs to provide
quantitative information for operational air quality and meteorological
monitoring
Atmospheric Thermodynamic Profiling through the Use of a Micro-Pulse Raman Lidar System: Introducing the Compact Raman Lidar MARCO
It was for a long time believed that lidar systems based on the use of high-repetition micro-pulse lasers could be effectively used to only stimulate atmospheric elastic backscatter echoes, and thus were only exploited in elastic backscatter lidar systems. Their application to stimulate rotational and roto-vibrational Raman echoes, and consequently, their exploitation in atmospheric thermodynamic profiling, was considered not feasible based on the technical specifications possessed by these laser sources until a few years ago. However, recent technological advances in the design and development of micro-pulse lasers, presently achieving high UV average powers (1–5 W) and small divergences (0.3–0.5 mrad), in combination with the use of large aperture telescopes (0.3–0.4 m diameter primary mirrors), allow one to presently develop micro-pulse laser-based Raman lidars capable of measuring the vertical profiles of atmospheric thermodynamic parameters, namely water vapor and temperature, both in the daytime and night-time. This paper is aimed at demonstrating the feasibility of these measurements and at illustrating and discussing the high achievable performance level, with a specific focus on water vapor profile measurements. The technical solutions identified in the design of the lidar system and their technological implementation within the experimental setup of the lidar prototype are also carefully illustrated and discussed
In-water lidar simulations: the ALADIN ADM-Aeolus backscattered signal at 355 nm
The Lidar Ocean Color (LiOC) Monte Carlo code has been developed to simulate the in-water propagation of the lidar beam emitted by the ALADIN ADM-Aeolus instrument in the ultraviolet (UV) spectral region (∼ 355 nm). To this end, LiOC accounts for reflection/transmission processes at the sea surface, absorption and multiple scattering in the water volume, and reflection from the sea bottom. The water volume components included in the model are pure seawater, Chlorophyll-a concentration (Chl-a), Colored Dissolved Organic Matter (CDOM), and/or a generic absorbing species. By considering the transmission/reception measurement geometry of ALADIN ADM-Aeolus, the study documents the variability of the normalized backscattered signal in different bio-optical conditions. The potential for data product retrieval based on information at 355 nm is considered by developing a demonstrative lookup table to estimate the absorption budget exceeding that explained by Chl-a. Results acknowledge the interest of space programs in exploiting UV bands for ocean color remote sensing, as, for instance, addressed by the PACE mission of NASA
Novel aromatic ring-hydroxylating dioxygenase genes from coastal marine sediments of Patagonia
<p>Abstract</p> <p>Background</p> <p>Polycyclic aromatic hydrocarbons (PAHs), widespread pollutants in the marine environment, can produce adverse effects in marine organisms and can be transferred to humans through seafood. Our knowledge of PAH-degrading bacterial populations in the marine environment is still very limited, and mainly originates from studies of cultured bacteria. In this work, genes coding catabolic enzymes from PAH-biodegradation pathways were characterized in coastal sediments of Patagonia with different levels of PAH contamination.</p> <p>Results</p> <p>Genes encoding for the catalytic alpha subunit of aromatic ring-hydroxylating dioxygenases (ARHDs) were amplified from intertidal sediment samples using two different primer sets. Products were cloned and screened by restriction fragment length polymorphism analysis. Clones representing each restriction pattern were selected in each library for sequencing. A total of 500 clones were screened in 9 gene libraries, and 193 clones were sequenced. Libraries contained one to five different ARHD gene types, and this number was correlated with the number of PAHs found in the samples above the quantification limit (<it>r </it>= 0.834, <it>p </it>< 0.05). Overall, eight different ARHD gene types were detected in the sediments. In five of them, their deduced amino acid sequences formed deeply rooted branches with previously described ARHD peptide sequences, exhibiting less than 70% identity to them. They contain consensus sequences of the Rieske type [2Fe-2S] cluster binding site, suggesting that these gene fragments encode for ARHDs. On the other hand, three gene types were closely related to previously described ARHDs: archetypical <it>nahAc</it>-like genes, <it>phnAc</it>-like genes as identified in <it>Alcaligenes faecalis </it>AFK2, and <it>phnA1</it>-like genes from marine PAH-degraders from the genus <it>Cycloclasticus</it>.</p> <p>Conclusion</p> <p>These results show the presence of hitherto unidentified ARHD genes in this sub-Antarctic marine environment exposed to anthropogenic contamination. This information can be used to study the geographical distribution and ecological significance of bacterial populations carrying these genes, and to design molecular assays to monitor the progress and effectiveness of remediation technologies.</p
The hyperornithinemia-hyperammonemia-homocitrullinuria syndrome
Hyperornithinemia-hyperammonemia-homocitrullinuria (HHH) syndrome is a rare autosomal recessive disorder of the urea cycle. HHH has a panethnic distribution, with a major prevalence in Canada, Italy and Japan. Acute clinical signs include intermittent episodes of vomiting, confusion or coma and hepatitis-like attacks. Alternatively, patients show a chronic course with aversion for protein rich foods, developmental delay/intellectual disability, myoclonic seizures, ataxia and pyramidal dysfunction. HHH syndrome is caused by impaired ornithine transport across the inner mitochondrial membrane due to mutations in SLC25A15 gene, which encodes for the mitochondrial ornithine carrier ORC1. The diagnosis relies on clinical signs and the peculiar metabolic triad of hyperammonemia, hyperornithinemia, and urinary excretion of homocitrulline. HHH syndrome enters in the differential diagnosis with other inherited or acquired conditions presenting with hyperammonemia
CUGC for hyperornithinemia-hyperammonemia-homocitrullinuria (HHH) syndrome
From 1999 to date, 50 affecting function variants have been
identified and associated to HHH syndrome [1–5]. As it is
not available in the literature a complete up-to-date list of
disease-causing variants for SLC25A15 gene, we included
this information as a Supplementary Excel sheet (See
Supplementary Material File #1): this list was created by
using LOVD and ClinVar databases and liked to the relevant literature reference. Reported variants consist of: 29
missense variants, 4 frameshift, 11 nonsense, 2 splicing,
2 small deletion, 1 in frame insertion, 1 gross deletion
The ketogenic diet increases in vivo glutathione levels in patients with epilepsy
The Ketogenic Diet (KD) is a high-fat, low-carbohydrate diet that has been utilized as the first line treatment for contrasting intractable epilepsy. It is responsible for the presence of ketone bodies in blood, whose neuroprotective effect has been widely shown in recent years but remains unclear. Since glutathione (GSH) is implicated in oxidation-reduction reactions, our aim was to monitor the effects of KD on GSH brain levels by means of magnetic resonance spectroscopy (MRS). MRS was acquired from 16 KD patients and seven age-matched Healthy Controls (HC). We estimated metabolite concentrations with linear combination model (LCModel), assessing differences between KD and HC with t-test. Pearson was used to investigate GHS correlations with blood serum 3-B-Hydroxybutyrate (3HB) concentrations and with number of weekly epileptic seizures. The results have shown higher levels of brain GSH for KD patients (2.5 ± 0.5 mM) compared to HC (2.0 ± 0.5 mM). Both blood serum 3HB and number of seizures did not correlate with GSH concentration. The present study showed a significant increase in GSH in the brain of epileptic children treated with KD, reproducing for the first time in humans what was previously observed in animal studies. Our results may suggest a pivotal role of GSH in the antioxidant neuroprotective effect of KD in the human brain
- …