2,635 research outputs found
The role of bipartite structure in R&D collaboration networks
A number of real-world networks are, in fact, one-mode projections of
bipartite networks comprised of two types of nodes. For institutions engaging
in collaboration for technological innovation, the underlying network is
bipartite with institutions (agents) linked to the patents they have filed
(artifacts), while the projection is the co-patenting network. Projected
network topology is highly affected by the underlying bipartite structure,
hence a lack of understanding of the bipartite network has consequences for the
information that might be drawn from the one-mode co-patenting network. Here,
we create an empirical bipartite network using data from 2.7 million patents.
We project this network onto the agents (institutions) and look at properties
of both the bipartite and projected networks that may play a role in knowledge
sharing and collaboration. We compare these empirical properties to those of
synthetic bipartite networks and their projections in order to understand the
processes that might operate in the network formation. A good understanding of
the topology is critical for investigating the potential flow of technological
knowledge. We show how degree distributions and small cycles affect the
topology of the one-mode projected network - specifically degree and clustering
distributions, and assortativity. We propose new network-based metrics to
quantify how collaborative agents are in the co-patenting network. We find that
several large corporations that are the most collaborative agents in the
network, however such organisations tend to have a low diversity of
collaborators. In contrast, the most prolific institutions tend to collaborate
relatively little but with a diverse set of collaborators. This indicates that
they concentrate the knowledge of their core technical research, while seeking
specific complementary knowledge via collaboration with smaller companies.Comment: 23 pages, 12 figures, 2 table
New partitioning perturbation theory. 2 - Example of almost degeneracy
Degeneracy applications to partitioning perturbation theory - Part
A benign, low Z electron capture agent for negative ion TPCs
We have identified nitromethane (CHNO) as an effective electron
capture agent for negative ion TPCs (NITPCs).
We present drift velocity and longitudinal diffusion measurements for
negative ion gas mixtures using nitromethane as the capture agent.
Not only is nitromethane substantially more benign than the only other
identified capture agent, CS, but its low atomic number will enable the use
of the NITPC as a photoelectric X{}-ray polarimeter in the 1{}-10 keV band
High-order optical nonlinearity at low light levels
We observe a nonlinear optical process in a gas of cold atoms that
simultaneously displays the largest reported fifth-order nonlinear
susceptibility \chi^(5) = 1.9x10^{-12} (m/V)^4 and high transparency. The
nonlinearity results from the simultaneous cooling and crystallization of the
gas, and gives rise to efficient Bragg scattering in the form of
six-wave-mixing at low-light-levels. For large atom-photon coupling strengths,
the back-action of the scattered fields influences the light-matter dynamics.
This system may have important applications in many-body physics, quantum
information processing, and multidimensional soliton formation.Comment: 5 pages, 3 figure
Gaseous Dark Matter Detectors
Dark Matter detectors with directional sensitivity have the potential of
yielding an unambiguous positive observation of WIMPs as well as discriminating
between galactic Dark Matter halo models. In this article, we introduce the
motivation for directional detectors, discuss the experimental techniques that
make directional detection possible, and review the status of the experimental
effort in this field.Comment: 19 pages, review on gaseous directional dark matter detectors
submitted to New Journal of Physic
The propensity of molecules to spatially align in intense light fields
The propensity of molecules to spatially align along the polarization vector
of intense, pulsed light fields is related to readily-accessible parameters
(molecular polarizabilities, moment of inertia, peak intensity of the light and
its pulse duration). Predictions can now be made of which molecules can be
spatially aligned, and under what circumstances, upon irradiation by intense
light. Accounting for both enhanced ionization and hyperpolarizability, it is
shown that {\it all} molecules can be aligned, even those with the smallest
static polarizability, when subjected to the shortest available laser pulses
(of sufficient intensity).Comment: 8 pages, 4 figures, to be submitted to PR
- …