299 research outputs found

    Design strategies for the self-assembly of polyhedral shells

    Full text link
    The control over the self-assembly of complex structures is a long-standing challenge of material science, especially at the colloidal scale, as the desired assembly pathway is often kinetically derailed by the formation of amorphous aggregates. Here we investigate in detail the problem of the self-assembly of the three Archimedean shells with five contact points per vertex, i.e. the icosahedron, the snub cube, and the snub dodecahedron. We use patchy particles with five interaction sites (or patches) as model for the building blocks, and recast the assembly problem as a Boolean satisfiability problem (SAT) for the patch-patch interactions. This allows us to find effective designs for all targets, and to selectively suppress unwanted structures. By tuning the geometrical arrangement and the specific interactions of the patches, we demonstrate that lowering the symmetry of the building blocks reduces the number of competing structures, which in turn can considerably increase the yield of the target structure. These results cement SAT-assembly as an invaluable tool to solve inverse design problems.Comment: 21 pages, 10 figure

    A utility-based suitability framework for integrated local-scale land-use modelling

    Get PDF
    AbstractModels that simulate land-use patterns often use either inductive, data-driven approaches or deductive, theory-based methods to describe the relative strength of the social, economic and biophysical forces that drive the various sectors in the land system. An integrated framework is proposed here that incorporates both approaches based on a unified assessment for local land suitability following a monetary, utility-based logic. The framework is illustrated with a hedonic pricing analysis of urban land values and a net present value assessment for agricultural production system in combination with statistics-based assessments of land suitability for other sectors.The results show that limited difference exists between the most commonly applied inductive approaches that use either multinomial or binomial logistic regression specifications of suitability. Land-use simulations following the binomial regression based suitability values that were rescaled to bid prices (reflecting relative competitiveness) perform better for all individual land-use types. Performance improves even further when a land value based description of urban bid prices is added to this approach. Interestingly enough the better fitting description of suitability for urban areas also improves the ability of the model to simulate correct locations for business estates and greenhouses.The simulation alternatives that consider the net present values for agricultural types of land use show the relevance of this approach for understanding the spatial distribution of these types of land use. The combined use of urban land values and net present values for agricultural land use in defining land suitability performs best in our validation exercise. The proposed methodology can also be used to incorporate information from other research frameworks that describe the utility of land for different types of use

    Two-step nucleation in a binary mixture of patchy particles

    Get PDF
    Nucleation in systems with a metastable liquid–gas critical point is the prototypical example of a two-step nucleation process in which the appearance of the critical nucleus is preceded by the formation of a liquid-like density fluctuation. So far, the majority of studies on colloidal and protein crystallization have focused on one-component systems, and we are lacking a clear description of two-step nucleation processes in multicomponent systems, where critical fluctuations involve coupled density and concentration inhomogeneities. Here, we examine the nucleation process of a binary mixture of patchy particles designed to nucleate into a diamond lattice. By combining Gibbs-ensemble simulations and direct nucleation simulations over a wide range of thermodynamic conditions, we are able to pin down the role of the liquid–gas metastable phase diagram on the nucleation process. In particular, we show that the strongest enhancement of crystallization occurs at an azeotropic point with the same stoichiometric composition of the crystal

    Highlights from the Pierre Auger Observatory

    Full text link
    The Pierre Auger Observatory is the world's largest cosmic ray observatory. Our current exposure reaches nearly 40,000 km2^2 str and provides us with an unprecedented quality data set. The performance and stability of the detectors and their enhancements are described. Data analyses have led to a number of major breakthroughs. Among these we discuss the energy spectrum and the searches for large-scale anisotropies. We present analyses of our Xmax_{max} data and show how it can be interpreted in terms of mass composition. We also describe some new analyses that extract mass sensitive parameters from the 100% duty cycle SD data. A coherent interpretation of all these recent results opens new directions. The consequences regarding the cosmic ray composition and the properties of UHECR sources are briefly discussed.Comment: 9 pages, 12 figures, talk given at the 33rd International Cosmic Ray Conference, Rio de Janeiro 201

    A search for point sources of EeV photons

    Full text link
    Measurements of air showers made using the hybrid technique developed with the fluorescence and surface detectors of the Pierre Auger Observatory allow a sensitive search for point sources of EeV photons anywhere in the exposed sky. A multivariate analysis reduces the background of hadronic cosmic rays. The search is sensitive to a declination band from -85{\deg} to +20{\deg}, in an energy range from 10^17.3 eV to 10^18.5 eV. No photon point source has been detected. An upper limit on the photon flux has been derived for every direction. The mean value of the energy flux limit that results from this, assuming a photon spectral index of -2, is 0.06 eV cm^-2 s^-1, and no celestial direction exceeds 0.25 eV cm^-2 s^-1. These upper limits constrain scenarios in which EeV cosmic ray protons are emitted by non-transient sources in the Galaxy.Comment: 28 pages, 10 figures, accepted for publication in The Astrophysical Journa

    Reconstruction of inclined air showers detected with the Pierre Auger Observatory

    Full text link
    We describe the method devised to reconstruct inclined cosmic-ray air showers with zenith angles greater than 60∘60^\circ detected with the surface array of the Pierre Auger Observatory. The measured signals at the ground level are fitted to muon density distributions predicted with atmospheric cascade models to obtain the relative shower size as an overall normalization parameter. The method is evaluated using simulated showers to test its performance. The energy of the cosmic rays is calibrated using a sub-sample of events reconstructed with both the fluorescence and surface array techniques. The reconstruction method described here provides the basis of complementary analyses including an independent measurement of the energy spectrum of ultra-high energy cosmic rays using very inclined events collected by the Pierre Auger Observatory.Comment: 27 pages, 19 figures, accepted for publication in Journal of Cosmology and Astroparticle Physics (JCAP

    Azimuthal asymmetry in the risetime of the surface detector signals of the Pierre Auger Observatory

    Get PDF
    The azimuthal asymmetry in the risetime of signals in Auger surface detector stations is a source of information on shower development. The azimuthal asymmetry is due to a combination of the longitudinal evolution of the shower and geometrical effects related to the angles of incidence of the particles into the detectors. The magnitude of the effect depends upon the zenith angle and state of development of the shower and thus provides a novel observable, (sec⁡ξ)max(\sec \theta)_\mathrm{max}, sensitive to the mass composition of cosmic rays above 3×10183 \times 10^{18} eV. By comparing measurements with predictions from shower simulations, we find for both of our adopted models of hadronic physics (QGSJETII-04 and EPOS-LHC) an indication that the mean cosmic-ray mass increases slowly with energy, as has been inferred from other studies. However, the mass estimates are dependent on the shower model and on the range of distance from the shower core selected. Thus the method has uncovered further deficiencies in our understanding of shower modelling that must be resolved before the mass composition can be inferred from (sec⁡ξ)max(\sec \theta)_\mathrm{max}.Comment: Replaced with published version. Added journal reference and DO

    Ultrahigh-energy neutrino follow-up of Gravitational Wave events GW150914 and GW151226 with the Pierre Auger Observatory

    Get PDF
    On September 14, 2015 the Advanced LIGO detectors observed their first gravitational-wave (GW) transient GW150914. This was followed by a second GW event observed on December 26, 2015. Both events were inferred to have arisen from the merger of black holes in binary systems. Such a system may emit neutrinos if there are magnetic fields and disk debris remaining from the formation of the two black holes. With the surface detector array of the Pierre Auger Observatory we can search for neutrinos with energy above 100 PeV from point-like sources across the sky with equatorial declination from about -65 deg. to +60 deg., and in particular from a fraction of the 90% confidence-level (CL) inferred positions in the sky of GW150914 and GW151226. A targeted search for highly-inclined extensive air showers, produced either by interactions of downward-going neutrinos of all flavors in the atmosphere or by the decays of tau leptons originating from tau-neutrino interactions in the Earth's crust (Earth-skimming neutrinos), yielded no candidates in the Auger data collected within ±500\pm 500 s around or 1 day after the coordinated universal time (UTC) of GW150914 and GW151226, as well as in the same search periods relative to the UTC time of the GW candidate event LVT151012. From the non-observation we constrain the amount of energy radiated in ultrahigh-energy neutrinos from such remarkable events.Comment: Published version. Added journal reference and DOI. Added Report Numbe
    • 

    corecore