3 research outputs found

    Incorporating alternative interaction modes, forbidden links and trait‐based mechanisms increases the minimum trait dimensionality of ecological networks

    Get PDF
    1. Individual-level traits mediate interaction outcomes and community structure. It is important, therefore, to identify the minimum number of traits that characterise ecological networks, that is, their ‘minimum dimensionality’. Existing methods for estimating minimum dimensionality often lack three features associated with in- creased trait numbers: alternative interaction modes (e.g. feeding strategies such as active vs. sit-and-wait feeding), trait-mediated ‘forbidden links’ and a mechanistic description of interactions. Omitting these features can underestimate the trait numbers involved, and therefore, minimum dimensionality. We develop a ‘mini- mum mechanistic dimensionality’ measure, accounting for these three features.2. The only input our method requires is the network of interaction outcomes. We assume how traits are mechanistically involved in alternative interaction modes. These unidentified traits are contrasted using pairwise performance inequalities between interacting species. For example, if a predator feeds upon a prey spe- cies via a typical predation mode, in each step of the predation sequence, the predator's performance must be greater than the prey's. We construct a system of inequalities from all observed outcomes, which we attempt to solve with mixed integer linear programming. The number of traits required for a feasible system of inequalities provides our minimum dimensionality estimate.3. We applied our method to 658 published empirical ecological networks includ- ing primary consumption, predator–prey, parasitism, pollination, seed dispersal and animal dominance networks, to compare with minimum dimensionality estimates when the three focal features are missing. Minimum dimensionality was typically higher when including alternative interaction modes (54% of empirical networks), ‘forbidden interactions’ as trait-mediated interaction outcomes (92%) or a mechanistic perspective (81%), compared to estimates missing these features. Additionally, we tested minimum dimensionality estimates on simulated networks with known dimensionality. Our method typically estimated a higher minimum dimensionality, closer to the actual dimensionality, while avoiding the overestimation associated with a previous method.4. Our method can reduce the risk of omitting traits involved in different interaction modes, in failure outcomes or mechanistically. More accurate estimates will allow us to parameterise models of theoretical networks with more realistic structure at the interaction outcome level. Thus, we hope our method can improve predictions of community structure and structure-dependent dynamics

    Simulating Future Land Use and Cover of a Mediterranean Mountainous Area: The Effect of Socioeconomic Demands and Climatic Changes

    No full text
    Land use and cover (LUC) of southern European mountains is dramatically changing, mainly due to observed socioeconomic demands and climatic changes. It is therefore important to understand LUC changes to accurately predict future landscapes and their threats. Simulation models of LUC change are ideal for this task because they allow the in silico experimentation under different socioeconomic and climatic scenarios. In the present study, we employed the trans-CLUE-S model, to predict for 2055 the LUC of a typical southern European sub-mountainous area, which has experienced widespread abandonment until recently. Four demand scenarios were tested, and under each demand scenario, we compared three climatic scenarios, ranging from less to more warm and dry conditions. We found that farmland declined from 3.2% of the landscape in 2015 to 0.4% in 2055 under the business-as-usual demand scenario, whereas forest further increased from 62.6% to 79%. For any demand scenario, differences in LUC between maps predicted under different climatic scenarios constituted less than 10% of the landscape. In the less than 10% that differed, mainly farmland and forest shifted to higher elevation under a warmer and drier climate, whereas grassland and scrubland to lower. Such insights by modelling analyses like the present study’s can improve the planning and implementation of management and restoration policies which will attempt to conserve ecosystem services and mitigate the negative effects of socioeconomic and climatic changes in the mountainous regions of southern Europe

    Acceleration and Relocation of Abandonment in a Mediterranean Mountainous Landscape: Drivers, Consequences, and Management Implications

    No full text
    Land abandonment in European mountains threatens habitats shaped for centuries by low-intensity agriculture and grazing. Hence, it is important to identify spatiotemporal patterns in rural abandonment, and relate them to biophysical and socioeconomic drivers. We pursued these goals in the theoretical context of transitions from traditional to productivist and then to post-productivist agriculture. We conducted a case study in a representative of southern Europe sub-mountainous marginal area that was once traditionally exploited (Pindus range, Epirus, Greece). Land cover was mapped from the outset of abandonment (years 1945, 1970, 1996 and 2015), and we subsequently calculated landscape metrics. An Intensity Analysis facilitated the comparison of rates of land cover change between time periods. By employing random forest modelling, we related socioeconomic, physiographic, geological and climatic predictors to land type occurrence and succession intensity. We found that farmland decreased from 30% to 3% during the 70 years of the study period, and that forest increased from 22% to 63%. The landscape’s heterogeneity, ecotone diversity, and spatial aggregation decreased. Abandonment and succession accelerated and relocated to lower elevation, especially during the latest time period, which was related to a second depopulation wave and livestock decrease. The remaining lowland farmlands were of productivist agriculture, and no widespread post-productivist regime was found. Thus, our study supports the view that policies, which have been mainly based on the linear transition of agricultural regimes in northern Europe, must take into account southern European mountains, where widespread abandonment can coexist with limited intensification and extensification
    corecore