28 research outputs found

    Integrated Proteomic Analysis of Human Cancer Cells and Plasma from Tumor Bearing Mice for Ovarian Cancer Biomarker Discovery

    Get PDF
    Background: The complexity of the human plasma proteome represents a substantial challenge for biomarker discovery. Proteomic analysis of genetically engineered mouse models of cancer and isolated cancer cells and cell lines provide alternative methods for identification of potential cancer markers that would be detectable in human blood using sensitive assays. The goal of this work is to evaluate the utility of an integrative strategy using these two approaches for biomarker discovery. Methodology/Principal Findings: We investigated a strategy that combined quantitative plasma proteomics of an ovarian cancer mouse model with analysis of proteins secreted or shed by human ovarian cancer cells. Of 106 plasma proteins identified with increased levels in tumor bearing mice, 58 were also secreted or shed from ovarian cancer cells. The remainder consisted primarily of host-response proteins. Of 25 proteins identified in the study that were assayed, 8 mostly secreted proteins common to mouse plasma and human cancer cells were significantly upregulated in a set of plasmas from ovarian cancer patients. Five of the eight proteins were confirmed to be upregulated in a second independent set of ovarian cancer plasmas, including in early stage disease. Conclusions/Significance: Integrated proteomic analysis of cancer mouse models and human cancer cell populations provides an effective approach to identify potential circulating protein biomarkers

    “Take it up a NOTCH

    No full text

    Defining fallopian tube‐derived miRNA cancer signatures

    No full text
    Abstract Background MicroRNAs have recently emerged as promising circulating biomarkers in diverse cancer types, including ovarian cancer. We utilized conditional, doxycycline‐induced fallopian tube (FT)‐derived cancer models to identify changes in miRNA expression in tumors and plasma, and further validated the murine findings in high‐grade ovarian cancer patient samples. Methods We analyzed 566 biologically informative miRNAs in doxycycline‐induced FT and metastatic tumors as well as plasma samples derived from murine models bearing inactivation of Brca, Tp53, and Pten genes. We identified miRNAs that showed a consistent pattern of dysregulated expression and validated our results in human patient serum samples. Results We identified six miRNAs that were significantly dysregulated in doxycycline‐induced FTs (P < .05) and 130 miRNAs differentially regulated in metastases compared to normal fallopian tissues (P < .05). Furthermore, we validated miR‐21a‐5p, miR‐146a‐5p, and miR‐126a‐3p as dysregulated in both murine doxycycline‐induced FT and metastatic tumors, as well as in murine plasma and patient serum samples. Conclusions In summary, we identified changes in miRNA expression that potentially accompany tumor development in murine models driven by commonly found genetic alterations in cancer patients. Further studies are required to test both the function of these miRNAs in driving the disease and their utility as potential biomarkers for diagnosis and/or disease progression

    Harnessing structure-activity relationship to engineer a cisplatin nanoparticle for enhanced antitumor efficacy

    Get PDF
    Cisplatin is a first line chemotherapy for most types of cancer. However, its use is dose-limited due to severe nephrotoxicity. Here we report the rational engineering of a novel nanoplatinate inspired by the mechanisms underlying cisplatin bioactivation. We engineered a novel polymer, glucosamine-functionalized polyisobutylene-maleic acid, where platinum (Pt) can be complexed to the monomeric units using a monocarboxylato and an O → Pt coordinate bond. We show that at a unique platinum to polymer ratio, this complex self-assembles into a nanoparticle, which releases cisplatin in a pH-dependent manner. The nanoparticles are rapidly internalized into the endolysosomal compartment of cancer cells, and exhibit an IC50 (4.25 ± 0.16 μM) comparable to that of free cisplatin (3.87 ± 0.37 μM), and superior to carboplatin (14.75 ± 0.38 μM). The nanoparticles exhibited significantly improved antitumor efficacy in terms of tumor growth delay in breast and lung cancers and tumor regression in a K-rasLSL/+/Ptenfl/fl ovarian cancer model. Furthermore, the nanoparticle treatment resulted in reduced systemic and nephrotoxicity, validated by decreased biodistribution of platinum to the kidney as quantified using inductively coupled plasma spectroscopy. Given the universal need for a better platinate, we anticipate this coupling of nanotechnology and structure-activity relationship to rationally reengineer cisplatin could have a major impact globally in the clinical treatment of cancer
    corecore