30 research outputs found

    Stabilizing enzymes within polymersomes by co-encapsulation of trehalose

    Get PDF
    Enzymes are essential biocatalysts and very attractive as therapeutics. However, their functionality is strictly related to their stability, which is significantly affected by the environmental changes occurring during their usage or long-term storage. Therefore, maintaining the activity of enzymes is essential when they are exposed to high temperature during usage or when they are stored for extended periods of time. Here, we stabilize and protect enzymes by coencapsulating them with trehalose into polymersomes. The anhydrobiotic disaccharide preserved up to about 81% of the enzyme's original activity when laccase/trehalose-loaded nanoreactors were kept desiccated for 2 months at room temperature and 75% of its activity when heated at 50 °C for 3 weeks. Moreover, the applicability of laccase/trehalose-loaded nanoreactors as catalysts for bleaching of the textile dyes orange G, toluidine blue O, and indigo was proven. Our results demonstrate the advantages of coencapsulating trehalose within polymersomes to stabilize enzymes in dehydrated state for extended periods of time, preserving their activity even when heated to elevated temperature

    Graphene nanoplatelets-sericin surface-modified Gum alloy for improved biological response

    Get PDF
    In this study a “Gum Metal” titanium-based alloy, Ti-31.7Nb-6.21Zr-1.4Fe-0.16O, was synthesized by melting and characterized in order to evaluate its potential for biomedical applications. The results showed that the newly developed alloy presents a very high strength, high plasticity and a low Young\u27s modulus relative to titanium alloys currently used in medicine. For further bone implant applications, the newly synthesized alloy was surface modified with graphene nanoplatelets (GNP), sericin (SS) and graphene nanoplatelets/sericine (GNP–SS) composite films via Matrix Assisted Pulsed Laser Evaporation (MAPLE) technique. The characterization of each specimen was monitored by scanning electron microscopy (SEM), atomic force microscopy (AFM), contact angle (CA) measurements, and Fourier Transform Infrared Spectroscopy (FTIR). The materials\u27 surface analyses suggested the successful coating of GNP, SS and GNP–SS onto the alloy surface. Additionally, the activities of pre-osteoblasts such as cell adhesion, cytoskeleton organization, cell proliferation and differentiation potentials exhibited on these substrates were investigated. Results showed that the GNP–SS-coated substrate significantly enhanced the growth and osteogenic differentiation of MC3T3-E1 cells when compared to bare and GNP-coated alloy. Collectively, the results show that GNP–SS surface-modified Gum alloy can modulate the bioactivity of the pre-osteoblasts holding promise for improved biological response in vivo

    Filling polymersomes with polymers by peroxidase-catalyzed atom transfer radical polymerization

    Get PDF
    Polymersomes that encapsulate a hydrophilic polymer are prepared by conducting biocatalytic atom transfer radical polymerization (ATRP) in these hollow nanostructures. To this end, ATRPase horseradish peroxidase (HRP) is encapsulated into vesicles self-assembled from poly(dimethylsiloxane)-block-poly(2-methyl-2-oxazoline) (PDMS-b-PMOXA) diblock copolymers. The vesicles are turned into nanoreactors by UV-induced permeabilization with a hydroxyalkyl phenone and used to polymerize poly(ethylene glycol) methyl ether acrylate (PEGA) by enzyme-catalyzed ATRP. As the membrane of the polymersomes is only permeable for the reagents of ATRP but not for macromolecules, the polymerization occurs inside of the vesicles and fills the polymersomes with poly(PEGA), as evidenced by 1H NMR. Dynamic and static light scattering show that the vesicles transform from hollow spheres to filled spheres during polymerization. Transmission electron microscopy (TEM) and cryo-TEM imaging reveal that the polymersomes are stable under the reaction conditions. The polymer-filled nanoreactors mimic the membrane and cytosol of cells and can be useful tools to study enzymatic behavior in crowded macromolecular environments

    Whole-genome sequence-based analysis of thyroid function

    Get PDF
    Tiina Paunio on työryhmÀn UK10K Consortium jÀsen.Normal thyroid function is essential for health, but its genetic architecture remains poorly understood. Here, for the heritable thyroid traits thyrotropin (TSH) and free thyroxine (FT4), we analyse whole-genome sequence data from the UK10K project (N = 2,287). Using additional whole-genome sequence and deeply imputed data sets, we report meta-analysis results for common variants (MAF >= 1%) associated with TSH and FT4 (N = 16,335). For TSH, we identify a novel variant in SYN2 (MAF = 23.5%, P = 6.15 x 10(-9)) and a new independent variant in PDE8B (MAF = 10.4%, P = 5.94 x 10(-14)). For FT4, we report a low-frequency variant near B4GALT6/ SLC25A52 (MAF = 3.2%, P = 1.27 x 10(-9)) tagging a rare TTR variant (MAF = 0.4%, P = 2.14 x 10(-11)). All common variants explain >= 20% of the variance in TSH and FT4. Analysis of rare variants (MAFPeer reviewe

    Bi-allelic Loss-of-Function CACNA1B Mutations in Progressive Epilepsy-Dyskinesia.

    Get PDF
    The occurrence of non-epileptic hyperkinetic movements in the context of developmental epileptic encephalopathies is an increasingly recognized phenomenon. Identification of causative mutations provides an important insight into common pathogenic mechanisms that cause both seizures and abnormal motor control. We report bi-allelic loss-of-function CACNA1B variants in six children from three unrelated families whose affected members present with a complex and progressive neurological syndrome. All affected individuals presented with epileptic encephalopathy, severe neurodevelopmental delay (often with regression), and a hyperkinetic movement disorder. Additional neurological features included postnatal microcephaly and hypotonia. Five children died in childhood or adolescence (mean age of death: 9 years), mainly as a result of secondary respiratory complications. CACNA1B encodes the pore-forming subunit of the pre-synaptic neuronal voltage-gated calcium channel Cav2.2/N-type, crucial for SNARE-mediated neurotransmission, particularly in the early postnatal period. Bi-allelic loss-of-function variants in CACNA1B are predicted to cause disruption of Ca2+ influx, leading to impaired synaptic neurotransmission. The resultant effect on neuronal function is likely to be important in the development of involuntary movements and epilepsy. Overall, our findings provide further evidence for the key role of Cav2.2 in normal human neurodevelopment.MAK is funded by an NIHR Research Professorship and receives funding from the Wellcome Trust, Great Ormond Street Children's Hospital Charity, and Rosetrees Trust. E.M. received funding from the Rosetrees Trust (CD-A53) and Great Ormond Street Hospital Children's Charity. K.G. received funding from Temple Street Foundation. A.M. is funded by Great Ormond Street Hospital, the National Institute for Health Research (NIHR), and Biomedical Research Centre. F.L.R. and D.G. are funded by Cambridge Biomedical Research Centre. K.C. and A.S.J. are funded by NIHR Bioresource for Rare Diseases. The DDD Study presents independent research commissioned by the Health Innovation Challenge Fund (grant number HICF-1009-003), a parallel funding partnership between the Wellcome Trust and the Department of Health, and the Wellcome Trust Sanger Institute (grant number WT098051). We acknowledge support from the UK Department of Health via the NIHR comprehensive Biomedical Research Centre award to Guy's and St. Thomas' National Health Service (NHS) Foundation Trust in partnership with King's College London. This research was also supported by the NIHR Great Ormond Street Hospital Biomedical Research Centre. J.H.C. is in receipt of an NIHR Senior Investigator Award. The research team acknowledges the support of the NIHR through the Comprehensive Clinical Research Network. The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR, Department of Health, or Wellcome Trust. E.R.M. acknowledges support from NIHR Cambridge Biomedical Research Centre, an NIHR Senior Investigator Award, and the University of Cambridge has received salary support in respect of E.R.M. from the NHS in the East of England through the Clinical Academic Reserve. I.E.S. is supported by the National Health and Medical Research Council of Australia (Program Grant and Practitioner Fellowship)

    Sustainable Multi-Network Cationic Cryogels for High-Efficiency Removal of Hazardous Oxyanions from Aqueous Solutions

    Full text link
    It is still a challenge to develop advanced materials able to simultaneously remove more than one pollutant. Exclusive cationic composite double- and triple-network cryogels, with adequate sustainability in the removal of Cr2O72− and H2PO4− oxyanions, were developed in this work starting from single-network (SN) sponges. Chitosan (CS), as the only polycation originating from renewable resources, and poly(N,N-dimethylaminoethylmethacrylate) (PDMAEMA) and polyethyleneimine (PEI), as synthetic polycations, were employed to construct multi-network cationic composite cryogels. The properties of the composites were tailored by the cross-linking degree of the first network (SN5 and SN20, which means CS with 5 or 20 mole % of glutaraldehyde, respectively) and by the order of the successive networks. FTIR, SEM-EDX, equilibrium water content and compressive tests were used in the exhaustive characterization of these polymeric composites. The sorption performances towards Cr2O72− and H2PO4− anions were evaluated in batch mode. The pseudo-first-order, pseudo-second-order (PSO) and Elovich kinetics models, and the Langmuir, Freundlich and Sips isotherm models were used to interpret the experimental results. The adsorption data were the best fitted by the PSO kinetic model and by the Sips isotherm model, indicating that the sorption mechanism was mainly controlled by chemisorption, irrespective of the structure and number of networks. The maximum sorption capacity for both oxyanions increased with the increase in the number of networks, the highest values being found for the multi-network sponges having SN5 cryogel as the first network. In binary systems, all sorbents preferred Cr2O72− ions, the selectivity coefficient being the highest for TN sponges. The high sorption capacity and remarkable reusability, with only a 4–6% drop in the sorption capacity after five sorption–desorption cycles, recommend these composite cryogels in the removal of two of the most dangerous pollutants represented by Cr2O72− and H2PO4−

    Chitosan-Based Polyelectrolyte Complex Cryogels with Elasticity, Toughness and Delivery of Curcumin Engineered by Polyions Pair and Cryostructuration Steps

    Full text link
    Chitosan (CS)-based drug delivery systems (DDSs) are often stabilized by chemical cross-linking. A much more friendly approach to deliver drugs in a controlled manner is represented by polyelectrolyte complexes (PECs) physically stabilized by spontaneous interactions between CS and natural or synthetic biocompatible polyanions. PECs with tunable structures, morphologies, and mechanical properties were fabricated in this paper by an innovative and sustainable strategy. Carboxymethyl cellulose (CMC) or poly(2-acrylamido-2-methylpropanesulfonate sodium salt) were used as aqueous solutions, while CS microparticles were evenly dispersed in the polyanion solution, at pH 6.5, where CS was not soluble. Cryostructuration of the dispersion in two steps (5 min at −196 °C, and 24 h at −18 °C), and freeze-drying at −55 °C, 48 h, conducted to pre-PEC cryogels. Next step was rearrangement of complementary polyions and the complex formation inside the pore walls of cryogels by exposure of the pre-PECs at a source of H+. PEC cryogels with impressive elasticity and toughness were engineered in this study by multiple-cryostructuration steps using CMC as polyanion with a molar mass of 250 kDa and an optimum concentration of polyanion and polycation. The performances of PEC cryogels in sustained delivery of anti-inflammatory drugs such as curcumin were demonstrated

    Spectacular Selectivity in the Capture of Methyl Orange by Composite Anion Exchangers with the Organic Part Hosted by DAISOGEL Microspheres

    Full text link
    There is a paramount need in finding sorbents endowed with selectivity in sorption of certain dyes from their mixture with other dyes from the same family. In this context, novel composite anion exchangers (CANEXs) were fabricated here by an innovative approach using silica DAISOGEL as the host for an anion exchanger (ANEX) bearing vinylbenzyl <i>N</i>,<i>N</i>-diethyl 2-hydroxyethyl ammonium moieties. Information about the outer surface versus in-pore generation of ANEX as a function of silica morphology was acquired by scanning electron microscopy. It was demonstrated that the CANEX microspheres were able to selectively capture methyl orange (MO) in binary mixtures with either methylene blue (MB) as the cationic dye or Chicago Sky Blue 6B (CSB) as the competing azo dye. The adsorption kinetics of MO and CSB were well-fitted by a pseudo-second-order model, indicating that chemisorption controlled the sorption process. Isotherms of “H” type characterized the sorption of MO, whereas “L” type isotherms described the sorption of CSB. Langmuir and Sips isotherms were the most suitable models to describe the sorption process at equilibrium. Even if only about 10 wt % of the CANEX sorbents was involved in the sorption process, the maximum sorption capacity was 180.25 mg MO/g composite and 153.86 mg CSB/g sorbent. Moreover, the CANEX sorbents exhibited a spectacular preference for MO molecules in competition with CSB at pH 5.5. Selectivity coefficient for MO in the mixture with either MB or CSB was 370 and 38.4, respectively. Removal efficiency of MO remained up to 100% after 10 consecutive sorption/desorption cycles

    Polysaccharide-Based Composite Hydrogels as Sustainable Materials for Removal of Pollutants from Wastewater

    Full text link
    Nowadays, pollution has become the main bottleneck towards sustainable technological development due to its detrimental implications in human and ecosystem health. Removal of pollutants from the surrounding environment is a hot research area worldwide; diverse technologies and materials are being continuously developed. To this end, bio-based composite hydrogels as sorbents have received extensive attention in recent years because of advantages such as high adsorptive capacity, controllable mechanical properties, cost effectiveness, and potential for upscaling in continuous flow installations. In this review, we aim to provide an up-to-date analysis of the literature on recent accomplishments in the design of polysaccharide-based composite hydrogels for removal of heavy metal ions, dyes, and oxyanions from wastewater. The correlation between the constituent polysaccharides (chitosan, cellulose, alginate, starch, pectin, pullulan, xanthan, salecan, etc.), engineered composition (presence of other organic and/or inorganic components), and sorption conditions on the removal performance of addressed pollutants will be carefully scrutinized. Particular attention will be paid to the sustainability aspects in the selected studies, particularly to composite selectivity and reusability, as well as to their use in fixed-bed columns and real wastewater applications
    corecore