20 research outputs found

    A specific scoliosis classification correlating with brace treatment: description and reliability

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Spinal classification systems for scoliosis which were developed to correlate with surgical treatment historically have been used in brace treatment as well. Previously, there had not been a scoliosis classification system developed specifically to correlate with brace design and treatment. The purpose of this study is to show the intra- and inter- observer reliability of a new scoliosis classification system correlating with brace treatment.</p> <p>Methods</p> <p>An original classification system ("Rigo Classification") was developed in order to define specific principles of correction required for efficacious brace design and fabrication. The classification includes radiological as well as clinical criteria. The radiological criteria are utilized to differentiate five basic types of curvatures including: (I) imbalanced thoracic (or three curves pattern), (II) true double (or four curve pattern), (III) balanced thoracic and false double (non 3 non 4), (IV) single lumbar and (V) single thoracolumbar. In addition to the radiological criteria, the Rigo Classification incorporates the curve pattern according to SRS terminology, the balance/imbalance at the transitional point, and L4-5 counter-tilting. To test the intra-and inter-observer reliability of the Rigo Classification, three observers (1 MD, 1 PT and 1 CPO) measured (and one of them, the MD, re-measured) 51 AP radiographs including all curvature types.</p> <p>Results</p> <p>The intra-observer Kappa value was 0.87 (acceptance >0.70). The inter-observer Kappa values fluctuated from 0.61 to 0.81 with an average of 0.71 (acceptance > 0.70).</p> <p>Conclusions</p> <p>A specific scoliosis classification which correlates with brace treatment has been proposed with an acceptable intra-and inter-observer reliability.</p

    A Ssp

    No full text

    Comparative analysis of gene sequence of goat CSN1S1 F and N alleles and characterization of CSN1S1 transcript variants in mammary gland.

    No full text
    In this paper, we report the full characterization, at DNA and RNA level, of the defective goat CSN1S1 F and N alleles and an extensive comparison with the A allele counterpart. By utilizing genomic DNA as template, we amplified the whole CSN1S1 gene plus 1972/3 nucleotides of the 5′ region plus 610 nucleotides of the 3′ region of the goat CSN1S1 N and CSN1S1 F alleles. Comparison of sequences of the N, F and A CSN1S1 alleles showed a total of 118 polymorphic sites. In particular, both the N and the F alleles are characterized by a deletion of the cytosine at the 23rd nucleotide of the 9th exon. The resulting one-nucleotide frameshift determines a premature stop codon (TGA, nucleotides 17–19 of the 12th exon). On the basis of the information so far available, it seems reasonable to hypothesize that the CSN1S1 N allele might be originated by interallelic recombination events. Comparison of transcripts produced by the N and F alleles shows a remarkable variability in alternative splicing events which concern, even though with different percentage ratios, mainly the lack of the 9th exon, the deletion of the last 5 nucleotides of the 9th exon and the contemporary deletion of exons 10 and 11

    Translational efficiency of casein transcripts in Mediterranean river buffalo

    No full text
    Buffalo milk is characterized by the presence of all 4 casein fractions (α(S1), β, α(S2), and κ) encoded by the 4 tightly linked autosomal genes (CSN1S1, CSN2, CSN1S2, and CSN3, respectively). In the present paper, we report for the first time a quantitative characterization of buffalo casein transcripts and show that the 4 genes are not transcribed and translated with the same efficiency. In particular, the analysis of individual milk samples obtained from 9 Mediterranean river buffaloes showed that the most abundant casein fractions were β (53.45%) and α(S1) (20.61%), followed by α(S2) and κ, at 14.28 and 11.66%, respectively. Quantification of the corresponding mRNA showed that the percentage of transcripts of the 4 caseins was 16.48, 23.18, 55.87, and 4.47% for α(S1), β, α(S2), and κ, respectively. Translation efficiency was 0.25 for CSN1S2, 1.31 for CSN1S1, 2.39 for CSN2, and 2.69 for the CSN3 transcripts, respectively. A comparison of nucleotide sequences with the Kozak consensus sequence was also carried out to investigate if the mRNA sequences might be responsible for the observed differences
    corecore