2 research outputs found

    Optimizing physical protection system using domain experienced exploration method

    Get PDF
    Assessing physical protection system efficiency is mostly done manually by security experts due to the complexity of the assessment process and lack of tools. Computer aided numerical vulnerability analysis has been developed to quantitatively assess physical protection systems. A variety of methods have been proposed to optimize physical protection systems, where one of the most advanced approaches entails precisely defining which security components should be selected and where they should be placed at protected facilities, taking into consideration adversary type, to maximize the probability that an adversary will be stopped at minimum system cost. The most computationally intensive part of the optimization process is the evaluation. The evaluation involves recreating search space and finding optimal adversaryā€™s attack paths from each entry point. We present the domain experienced exploration method that optimizes evaluation process during the search for optimum solutions, considering results from previous evaluations. Performed experiments show that using the presented method, in real-world domains, results in a reduction of evaluation iterations

    Variable Speed Limit and Ramp Metering for Mixed Traffic Flows: A Review and Open Questions

    No full text
    The trend of increasing traffic demand is causing congestion on existing urban roads, including urban motorways, resulting in a decrease in Level of Service (LoS) and safety, and an increase in fuel consumption. Lack of space and non-compliance with citiesā€™ sustainable urban plans prevent the expansion of new transport infrastructure in some urban areas. To alleviate the aforementioned problems, appropriate solutions come from the domain of Intelligent Transportation Systems by implementing traffic control services. Those services include Variable Speed Limit (VSL) and Ramp Metering (RM) for urban motorways. VSL reduces the speed of incoming vehicles to a bottleneck area, and RM limits the inflow through on-ramps. In addition, with the increasing development of Autonomous Vehicles (AVs) and Connected AVs (CAVs), new opportunities for traffic control are emerging. VSL and RM can reduce traffic congestion on urban motorways, especially so in the case of mixed traffic flows where AVs and CAVs can fully comply with the control system output. Currently, there is no existing overview of control algorithms and applications for VSL and RM in mixed traffic flows. Therefore, we present a comprehensive survey of VSL and RM control algorithms including the most recent reinforcement learning-based approaches. Best practices for mixed traffic flow control are summarized and new viewpoints and future research directions are presented, including an overview of the currently open research questions
    corecore