13 research outputs found
Production and Characterization of Chimeric Monoclonal Antibodies against Burkholderia pseudomallei and B. mallei Using the DHFR Expression System
Burkholderia pseudomallei (BP) and B. mallei (BM) are closely related gram-negative, facultative anaerobic bacteria which cause life-threatening melioidosis in human and glanders in horse, respectively. Our laboratory has previously generated and characterized more than 100 mouse monoclonal antibodies (MAbs) against BP and BM, according to in vitro and in vivo assay. In this study, 3 MAbs (BP7 10B11, BP7 2C6, and BP1 7F7) were selected to develop into chimeric mouse-human monoclonal antibodies (cMAbs) against BP and/or BM. For the stable production of cMAbs, we constructed 4 major different vector systems with a dihydrofolate reductase (DHFR) amplification marker, and optimized transfection/selection conditions in mammalian host cells with the single-gene and/or double-gene expression system. These 3 cMAbs were stably produced by the DHFR double mutant Chinese hamster ovarian (CHO)-DG44 cells. By ELISA and Western blot analysis using whole bacterial antigens treated by heat (65°C/90 min), sodium periodate, and proteinase K, the cMAb BP7 10B11 (cMAb CK1) reacted with glycoproteins (34, 38, 48 kDa in BP; 28, 38, 48 kDa in BM). The cMAb BP7 2C6 (cMAb CK2) recognized surface-capsule antigens with molecular sizes of 38 to 52 kDa, and 200 kDa in BM. The cMAb CK2 was weakly reactive to 14∼28, 200 kDa antigens in BP. The cMAb BP1 7F7 (cMAb CK3) reacted with lipopolysaccharides (38∼52 kDa in BP; 38∼60 kDa in B. thailandensis). Western blot results with the outer surface antigens of the 3 Burkholderia species were consistent with results with the whole Burkholderia cell antigens, suggesting that these immunodominant antigens reacting with the 3 cMAbs were primarily present on the outer surface of the Burkholderia species. These 3 cMAbs would be useful for analyzing the role of the major outer surface antigens in Burkholderia infection
Quantitative characterization of metabolism and metabolic shifts during growth of the new human cell line AGE1.HN using time resolved metabolic flux analysis
For the improved production of vaccines and therapeutic proteins, a detailed understanding of the metabolic dynamics during batch or fed-batch production is requested. To study the new human cell line AGE1.HN, a flexible metabolic flux analysis method was developed that is considering dynamic changes in growth and metabolism during cultivation. This method comprises analysis of formation of cellular components as well as conversion of major substrates and products, spline fitting of dynamic data and flux estimation using metabolite balancing. During batch cultivation of AGE1.HN three distinct phases were observed, an initial one with consumption of pyruvate and high glycolytic activity, a second characterized by a highly efficient metabolism with very little energy spilling waste production and a third with glutamine limitation and decreasing viability. Main events triggering changes in cellular metabolism were depletion of pyruvate and glutamine. Potential targets for the improvement identified from the analysis are (i) reduction of overflow metabolism in the beginning of cultivation, e.g. accomplished by reduction of pyruvate content in the medium and (ii) prolongation of phase 2 with its highly efficient energy metabolism applying e.g. specific feeding strategies. The method presented allows fast and reliable metabolic flux analysis during the development of producer cells and production processes from microtiter plate to large scale reactors with moderate analytical and computational effort. It seems well suited to guide media optimization and genetic engineering of producing cell lines
Dynamic analysis of GS-NS0 cells producing a recombinant monoclonal antibody during fed-batch culture
In this study we have analyzed the dynamic covariation of the mammalian cell proteome with respect to functional phenotype during fed-batch culture of NS0 murine myeloma cells producing a recombinant IgG(4) monoclonal antibody. GS-NS0 cells were cultured in duplicate 10 L bioreactors (36.5 degrees C, 15% DOT, pH 7.0) for 335 h and supplemented with a continuous feed stream after 120 h. Cell-specific growth rate declined continuously after 72 h of culture. Cell-specific recombinant monoclonal antibody production rate (qP) varied sixfold through culture. Whilst qP correlated with relative recombinant heavy chain mRNA abundance up to 216 h, qP subsequently declined, independent of recombinant heavy chain or light chain mRNA abundance. GS-NS0 cultures were sampled at 48 h intervals between 24 and 264 h of culture for proteomic analyses. Total protein abundance and nascent polypeptide synthesis was determined by 2D PAGE of unlabeled proteins visualized by SYPRO (R) Ruby and autoradiography of S-35-labeled polypeptides, respectively. Covariation of nascent polypeptide synthesis and abundance with biomass-specific cell growth, glucose and glutamate consumption, lactate and Mab production rates were then examined using two partial least squares regression models. Most changes in polypeptide synthesis or abundance for proteins previously identified by mass spectrometry were positively correlated with biomass-specific growth rate. We conclude that the substantial transitions in cell physiology and qP that occur during culture utilize a relatively constant complement of the most abundant host cell machines that vary primarily with respect to induced changes in cell growth rate
Dynamic analysis of GS-NS0 cells producing a recombinant monoclonal antibody during fed-batch culture
In this study we have analyzed the dynamic covariation of the mammalian cell proteome with respect to functional phenotype during fed-batch culture of NS0 murine myeloma cells producing a recombinant IgG(4) monoclonal antibody. GS-NS0 cells were cultured in duplicate 10 L bioreactors (36.5 degrees C, 15% DOT, pH 7.0) for 335 h and supplemented with a continuous feed stream after 120 h. Cell-specific growth rate declined continuously after 72 h of culture. Cell-specific recombinant monoclonal antibody production rate (qP) varied sixfold through culture. Whilst qP correlated with relative recombinant heavy chain mRNA abundance up to 216 h, qP subsequently declined, independent of recombinant heavy chain or light chain mRNA abundance. GS-NS0 cultures were sampled at 48 h intervals between 24 and 264 h of culture for proteomic analyses. Total protein abundance and nascent polypeptide synthesis was determined by 2D PAGE of unlabeled proteins visualized by SYPRO (R) Ruby and autoradiography of S-35-labeled polypeptides, respectively. Covariation of nascent polypeptide synthesis and abundance with biomass-specific cell growth, glucose and glutamate consumption, lactate and Mab production rates were then examined using two partial least squares regression models. Most changes in polypeptide synthesis or abundance for proteins previously identified by mass spectrometry were positively correlated with biomass-specific growth rate. We conclude that the substantial transitions in cell physiology and qP that occur during culture utilize a relatively constant complement of the most abundant host cell machines that vary primarily with respect to induced changes in cell growth rate
Proteomic profiling of recombinant cells from large-scale mammalian cell culture processes
Global expression profiling of mammalian cells used for the production of biopharmaceuticals will allow greater insights into the molecular mechanisms that result in a high producing cellular phenotype. These studies may give insights for genetic intervention to possibly create better host cell lines or even to provide clues to more rational strategies for cell line and process development. In this review I will focus on the contribution of proteomic technologies to a greater understanding of the biology of Chinese hamster ovary cells and other producing cell lines such as NS0 mouse cells
Documenting scarce and fragmented residues on stone tools: an experimental approach using optical microscopy and SEM-EDS
Residue analyses are widely applied to studies of stone tool function and can be a powerful method for determining the past tool use(s), especially when combined with other functional investigations such as usewear and technological analysis. Experimental work has shown that optical microscopes and the scanning electron microscope with energy dispersive X-ray spectroscopy (SEM-EDS) are reliable instruments for identifying intact tool residues. However, little experimental work has aimed to document residues that show various stages of degradation or when abundance is low. We combined traditional optical microscopy and the SEM-EDS to identify the advantages and challenges of each technique when looking at progressively smaller and more fragmented residues following more aggressive stages of cleaning, burial and soaking in a weak acid/base solution. We found that large quantities of intact residues on unwashed stone tools show distinctive morphological features under optical microscopes and the SEM-EDS can be used to document residues under extremely high magnifications and to determine their elemental compositions. After the various stages of washing, we found that residues became highly fragmented and were restricted to common stone features like the micro-cracks/scars along the working edge. These residues were often difficult to characterise using optical microscopes but the SEM-EDS proved highly useful. The weak acid/base solutions caused some residues to become physically altered or modified their elemental composition. Buried tools reduced the abundance of use-residues and introduced additional non-use-related contaminant particles that affected EDS measurements and lead to less reliable residue interpretations