417 research outputs found

    Quaternion Graph Neural Networks

    Full text link
    Recently, graph neural networks (GNNs) become a principal research direction to learn low-dimensional continuous embeddings of nodes and graphs to predict node and graph labels, respectively. However, Euclidean embeddings have high distortion when using GNNs to model complex graphs such as social networks. Furthermore, existing GNNs are not very efficient with the high number of model parameters when increasing the number of hidden layers. Therefore, we move beyond the Euclidean space to a hyper-complex vector space to improve graph representation quality and reduce the number of model parameters. To this end, we propose quaternion graph neural networks (QGNN) to generalize GCNs within the Quaternion space to learn quaternion embeddings for nodes and graphs. The Quaternion space, a hyper-complex vector space, provides highly meaningful computations through Hamilton product compared to the Euclidean and complex vector spaces. As a result, our QGNN can reduce the model size up to four times and enhance learning better graph representations. Experimental results show that the proposed QGNN produces state-of-the-art accuracies on a range of well-known benchmark datasets for three downstream tasks, including graph classification, semi-supervised node classification, and text (node) classification. Our code is available at: https://github.com/daiquocnguyen/QGNNComment: The extended abstract has been accepted to NeurIPS 2020 Workshop on Differential Geometry meets Deep Learning (DiffGeo4DL). The code in Pytorch and Tensorflow is available at: https://github.com/daiquocnguyen/QGN

    Two-view Graph Neural Networks for Knowledge Graph Completion

    Full text link
    We present an effective GNN-based knowledge graph embedding model, named WGE, to capture entity- and relation-focused graph structures. In particular, given the knowledge graph, WGE builds a single undirected entity-focused graph that views entities as nodes. In addition, WGE also constructs another single undirected graph from relation-focused constraints, which views entities and relations as nodes. WGE then proposes a GNN-based architecture to better learn vector representations of entities and relations from these two single entity- and relation-focused graphs. WGE feeds the learned entity and relation representations into a weighted score function to return the triple scores for knowledge graph completion. Experimental results show that WGE outperforms competitive baselines, obtaining state-of-the-art performances on seven benchmark datasets for knowledge graph completion.Comment: 13 pages; 3 tables; 3 figure
    • …
    corecore