53 research outputs found

    The impact of ocean acidification and cadmium on the immune responses of Pacific oyster, Crassostrea gigas

    Get PDF
    Seawater acidification (OA) and cadmium (Cd) has the potential to lead to immunosuppression effect on marine bivalves. However, the interaction between these two environmental stressors on immune system of marine bivalves has received limited attention. In order to evaluate the defense responses of oysters under the combined exposure to OA and cadmium, the oysters Crassostrea gigas were exposed to 10 mu g/L Cd at three pH levels (8.1, 7.8 and 7.6) for 31 days. Results showed that OA exposure alone led to increased DNA damage, apoptosis rate and ROS production of hemocytes. However, inhibited phagocytosis rate, combined with increased DNA damage, apoptosis rate and ROS production of hemocytes were observed in oysters under exposure to Cd exposure alone or combined with OA. Significant interactive effects between OA and Cd were observed on ROS production and DNA damage of hemocytes. In addition, there is generally significant increase in the mRNA expression of genes related to immune-related TLR pathway and two immune factors (TNF and integrin beta-1B) in Cd-exposed oysters at pH 7.6. The results revealed that even though the mRNA expression of genes related to immune responses (TLR pathway and immune factors) was stimulated to counteract the immunosuppression caused by acidified seawater and Cd, depressed hemocyte function perhaps sensitized oysters to potential pathogen infection

    Seawater Acidification Reduced the Resistance of Crassostrea gigas to Vibrio splendidus Challenge: An Energy Metabolism Perspective

    Get PDF
    Negative physiological impacts induced by exposure to acidified seawater might sensitize marine organisms to future environmental stressors, such as disease outbreak. The goal of this study was to evaluate if ocean acidification (OA) could reduce the resistance capability of the Pacific oyster (Crassostrea gigas) to Vibrio splendidus challenge from an energy metabolism perspective. In this study, the Pacific oyster was exposed to OA (pH 7.6) for 28 days and then challenged by V. splendidus for another 72 h. Antioxidative responses, lipid peroxidation, metabolic (energy sensors, aerobic metabolism, and anaerobic metabolism) gene expression, glycolytic enzyme activity, and the content of energy reserves (glycogen and protein) were investigated to evaluate the environmental risk of pathogen infection under the condition of OA. Our results demonstrated that following the exposure to seawater acidification, oysters exhibited an energy modulation with slight inhibition of aerobic energy metabolism, stimulation of anaerobic metabolism, and increased glycolytic enzyme activity. However, the energy modulation ability and antioxidative regulation of oysters exposed to seawater acidification may be overwhelmed by a subsequent pathogen challenge, resulting in increased oxidative damage, decreased aerobic metabolism, stimulated anaerobic metabolism, and decreased energy reserves. Overall, although anaerobic metabolism was initiated to partially compensate for inhibited aerobic energy metabolism, increased oxidative damage combined with depleted energy reserves suggested that oysters were in an unsustainable bioenergetic state and were thereby incapable of supporting long-term population viability under conditions of seawater acidification and a pathogen challenge from V. splendidus

    Integrative Biomarker Assessment of the Influence of Saxitoxin on Marine Bivalves: A Comparative Study of the Two Bivalve Species Oysters, Crassostrea gigas, and Scallops, Chlamys farreri

    Get PDF
    Harmful algae blooms have expanded greatly in recent decades, and their secreted toxins pose a severe threat to human health and marine ecosystems. Saxitoxin (STX) is a main paralytic shellfish poison naturally produced by marine microalgae of the genus Alexandrium. Despite numerous studies have assessed the impacts of STX on marine bivalves, comparative in vivo study on the toxicity of STX on bivalves with distinct accumulation ability (such as oysters and scallops) has been seldom investigated. The aim of this study was to identify whether distinct sensitivity exists between oysters, Crassostrea gigas, and scallops, Chlamys farreri under the same amount of STX exposure using multiple biomarker responses. The responses of different biochemical markers including oxidative stress markers (catalase, superoxide dismutase, glutathione S-transferase, and lipid peroxidation) and immunotoxicity biomarkers (hemocyte phagocytosis rate, reactive oxidative species production, and DNA damages) were evaluated in bivalves after 12, 48, and 96 h of exposure to STX. The integrated biomarker responses value combined with two-way ANOVA analysis suggested that STX posed slightly severer stress on scallops than oysters for the extended period of time. This study provided preliminary results on the usefulness of a multi-biomarker approach to assess the toxicity associated with STX exposure in marine bivalves

    Antibacterial activity and mechanism of a type-I ubiquitin from the clam Ruditapes philippinarum

    No full text
    In the present study, a ubiquitin (designated as RpUbi) was identified and characterized from clam Ruditapes philippinarum. Phylogenetic analysis strongly suggested that RpUbi was a member of the ubiquitin family. In nonstimulated clams, RpUbi transcripts were constitutively expressed in all examined tissues, especially in the gills and hemocytes. After Vibrio anguillarum challenge, expression of RpUbi mRNA in hemocytes was significantly upregulated. Recombinant RpUbi (rRpUbi) showed high antibacterial activity against Gram-positive and Gramnegative bacteria. Notably, membrane integrity and electrochemical assay indicated that rRpUbi could invade the inner layer. Moreover, DNA migration could be inhibited by rRpUbi in a concentration-dependent manner. In general, our results suggested that RpUbi played an important role in host defense against invading bacteria, perhaps through a DNA-binding process

    Mitochondria are essential for antibacterial extracellular trap formation mediated by zymosan in hemocytes of Ruditapes philippinarum

    No full text
    The formation of extracellular traps (ETs) is an important innate immune mechanism that serves to combat different invading pathogens. In this study, zymosan significantly induced the formation of ETs in the hemocytes of Ruditapes philippinarum, and this effect was accompanied by translocation of the mitochondria to the cell surface. Zymosan stimulation clearly induced an increase in intracellular ROS and MPO production and an overexpression of ROS-related genes (PI3K, AKT and HIF). In response to the ROS burst, the mitochondrial membrane potential decreased, and the mitochondrial permeability transition pore opened. Conversely, mitochondrial superoxide inhibitor (Mito-TEMPO) significantly inhibited the formation of ETs, suggesting that mitochondrial ROS were necessary for the formation of ETs. In addition, we found that zymosan-induced ETs showed antibacterial activities against gram-negative and gram-positive bacteria, such as Vibrio anguillarum, Vibrio harveyi, Escherichia coli and Micrococcus luteus. Taken together, these findings elucidated a new antibacterial approach for R. philippinarum and highlighted the role of mitochondria in the formation of zymosaninduced ETs

    Effects of the potential probiotic Bacillus subtilis D1-2 on growth, digestion, immunity and intestinal flora in juvenile sea cucumber, Apostichopus japonicus

    No full text
    In the present study, a potential probiotic Bacillus subtilis D1-2 with antibacterial activity was isolated from the gut of Apostichopus japonicus. The purpose of this experiment was to assess the effect of B. subtilis D1-2 at different concentrations (C: 0 CFU/g, BL: 10(5) CFU/g, BM: 10(7) CFU/g and BH: 10(9) CFU/g) on the growth performance, digestive enzyme activity, immune ability and intestinal flora of A. japonicus. After the 56-day feeding trial, the final body weight and weight gain rate of juvenile sea cucumber A. japonicus fed B. subtilis D1-2 were significantly increased, especially in the BM group. Additionally, the lipase activity of the intestine was significantly increased in the BM and BH groups. Enhanced immunity was also found in sea cucumbers supplemented with B. subtilis D1-2. Alpha diversity indices showed that the B. subtilis D1-2-supplemented groups had higher intestinal microbial richness and diversity than the control group. The beta diversity analysis indicated that the bacterial communities in the B. subtilis D1-2-supplemented groups were quite similar but different from the bacterial communities in the control group. Dietary supplementation with B. subtilis D1-2 increased the relative abundance of some potential probiotic-related genera, including Lactobacillus, Clostridium, Lactococcus, Bifidobacterium and Streptococcus. In conclusion, dietary addition of B. subtilis D1-2 could effectively promote the growth of A. japonicus, improve its digestion and immunity capacity to a certain extent, and actively regulate the intestinal microflora of A. japonicus

    In vitro study of deltamethrin-induced extracellular traps in hemocytes of Ruditapes philippinarum

    No full text
    Deltamethrin (DLM), a broad-spectrum pesticide, has been proven to have toxic effects on aquatic organisms. Here, we detected the formation of extracellular traps (ETosis) formation in Manila clam (Ruditapes philippinarum) hemocytes stimulated by three concentrations of DLM (0.01, 0.1 and 1 μg/mL) in vitro, and explored the underlying mechanisms induced by this pesticide. Extracellular DNA structure observation and quantitative results indicated that DLM exposure could obviously induce hemocytes ETosis, especially under high concentration of DLM induction. Moreover, DLM increased the levels of myeloperoxidase (MPO) and reactive oxygen species (ROS) in a dose-dependent manner, and enhanced the mRNA expression of several ROS-related genes. DPI (NADPH oxidase inhibitor) and ABAH (MPO inhibitor) could substantially inhibit DLM-induced extracellular traps (ETs), suggesting that the induced ETs release was caused by the induction of the ROS burst and MPO production. In addition, three concentrations of DLM-induced ETs were also accompanied by mitochondrial dysfunction, such as increasing the production of mitochondrial ROS, leading to a decrease in mitochondrial membrane potential (MMP) and activation of mitochondrial permeability transition pore (MPTP). Taken together, these results will shed new light on the immunotoxicity of DLM in clams and perhaps lays the foundation for health assessment in bivalves

    Cloning and transcriptional analysis of two sialic acid-binding lectins (SABLs) from razor clam Solen grandis

    No full text
    Sialic acid-binding lectin (SABL) plays crucial role in both innate and adaptive immune responses benefiting from its predominant affinity toward glycan. In the present study, two SABLs from razor clam Solen grandis (designated as SgSABL-1 and SgSABL-2) were identified, and their expression patterns, both in tissues and towards microorganism glycan stimulation, were then characterized. The cDNA of SgSABL-1 and SgSABL-2 was 988 and 1281 bp, containing an open reading frame (ORF) of 744 and 570 bp, respectively, and deduced amino acid sequences showed high similarity to other invertebrates SABLs. Both SgSABL-1 and SgSABL-2 encoded a C1q domain. SgSABL-1 and SgSABL-2 were found to be constitutively expressed in a wide range of tissues with different levels, including mantle, gill, gonad, hemocyte, muscle, and hepatopancreas, and both of them were highly expressed in hepatopancreas. SgSABL-1 and SgSABL-2 could be significantly induced after razor clams were stimulated by acetylated subunits-containing glycan LPS and PGN, suggesting the two SgSABLs might perform potential function of glycan recognition. In addition, SgSABL-2 could also be induced by beta-1,3-glucan. All these results indicated that SgSABL-1 and SgSABL-2 might be involved in the immune response against microbe infection and contributed to the pathogens recognition.Sialic acid-binding lectin (SABL) plays crucial role in both innate and adaptive immune responses benefiting from its predominant affinity toward glycan. In the present study, two SABLs from razor clam Solen grandis (designated as SgSABL-1 and SgSABL-2) were identified, and their expression patterns, both in tissues and towards microorganism glycan stimulation, were then characterized. The cDNA of SgSABL-1 and SgSABL-2 was 988 and 1281 bp, containing an open reading frame (ORF) of 744 and 570 bp, respectively, and deduced amino acid sequences showed high similarity to other invertebrates SABLs. Both SgSABL-1 and SgSABL-2 encoded a C1q domain. SgSABL-1 and SgSABL-2 were found to be constitutively expressed in a wide range of tissues with different levels, including mantle, gill, gonad, hemocyte, muscle, and hepatopancreas, and both of them were highly expressed in hepatopancreas. SgSABL-1 and SgSABL-2 could be significantly induced after razor clams were stimulated by acetylated subunits-containing glycan LPS and PGN, suggesting the two SgSABLs might perform potential function of glycan recognition. In addition, SgSABL-2 could also be induced by beta-1,3-glucan. All these results indicated that SgSABL-1 and SgSABL-2 might be involved in the immune response against microbe infection and contributed to the pathogens recognition. (C) 2012 Elsevier Ltd. All rights reserved
    • …
    corecore