6 research outputs found
m6A-mediated lnc-OXAR promotes oxaliplatin resistance by enhancing Ku70 stability in non-alcoholic steatohepatitis-related hepatocellular carcinoma
Abstract Background The escalating prevalence of metabolic diseases has led to a rapid increase in non-alcoholic steatohepatitis (NASH)-related hepatocellular carcinoma (NASH-HCC). While oxaliplatin (OXA)-based hepatic arterial infusion chemotherapy (HAIC) has shown promise in advanced-stage HCC patients, its efficacy in NASH-HCC remains uncertain. This study aims to assess the effectiveness of OXA-based HAIC and elucidate the mechanisms underlying OXA resistance in NASH-HCC. Methods The key lncRNAs were screened through RNA-seq analysis of NASH/non-NASH and OXA-sensitive/OXA-resistant (OXA-S/R) HCC tissues. The biological functions of the lnc-OXAR (OXA resistance–related lncRNA in NASH-HCC) in NASH-HCC were verified through a series of in vitro and in vivo experiments. The molecular mechanism of lnc-OXAR was elucidated by fluorescence in situ hybridization, immunoprecipitation-mass spectrometry (FISH), Immunoprecipitation-Mass Spectrometry (IP-MS), RNA pulldown, RNA immunoprecipitation (RIP), methylated RNA immunoprecipitation sequencing (MeRIP-Seq) and a dual-luciferase reporter assay. Results NASH-HCC exhibited reduced responsiveness to OXA-based HAIC compared to non-NASH HCC. We identified and validated a novel transcript namedlnc-OXAR, which played a crucial role in conferring OXA resistance to NASH-HCC. Inhibition of lnc-OXAR suppressed HCC cell growth and restored OXA sensitivity both in NASH-HCC mouse models and in vitro. Mechanistically, lnc-OXAR recruited Ku70 and cystatin A (CSTA), preventing Ku70 degradation and facilitating DNA double-strand break (DSB) repair, thereby promoting OXA resistance in NASH-HCC. Additionally, WTAP-mediated m6A modification enhanced the stability of lnc-OXAR in an IGF2BP2-dependent manner. Notably, silencing lnc-OXAR significantly enhanced the response to OXA in patient-derived xenograft (PDX) models derived from NASH-HCC. Conclusions The reduced responsiveness of NASH-HCC to OXA treatment can be attributed to the upregulation of lnc-OXAR. Our findings provide a rationale for stratifying HCC patients undergoing OXA-based HAIC based on etiology. Lnc-OXAR holds promise as a novel target for overcoming OXA resistance in NASH-HCC and improving prognosis
Comprehensive analysis of m6A modification in immune infiltration, metabolism and drug resistance in hepatocellular carcinoma
Abstract N6-methyladenosine (m6A) is important in regulating mRNA stability, splicing, and translation, and it also contributes to tumor development. However, there is still limited understanding of the comprehensive effects of m6A modification patterns on the tumor immune microenvironment, metabolism, and drug resistance in hepatocellular carcinoma (HCC). In this study, we utilized unsupervised clustering based on the expression of 23 m6A regulators to identify m6A clusters. We identified differential m6A modification patterns and characterized m6A-gene-cluster A, which exhibited poorer survival rates, a higher abundance of Treg cells, and increased expression of TGFβ in the tumor microenvironment (TME). Additionally, m6A-gene-cluster A demonstrated higher levels of glycolysis activity, cholesterol metabolism, and fatty acid biosynthesis. We also found that the m6A score was associated with prognosis and drug resistance. Patients with a low m6A score experienced worse prognoses, which were linked to an abundance of Treg cells, upregulation of TGFβ, and increased metabolic activity. HCC patients with a higher m6A score showed improved prognosis following sorafenib treatment and immunotherapy. In conclusion, we reveals the association between m6A modification patterns and the tumor immune microenvironment, metabolism, and drug resistance in HCC. Furthermore, the m6A score holds potential as a predictive factor for the efficacy of targeted therapy and immunotherapy in HCC
Monoacylglycerol acyltransferase-2 inhibits colorectal carcinogenesis in APCmin+/− mice
Summary: Monoacylglycerol acyltransferase-2 (MOGAT2), encodes MOGAT enzyme in the re-synthesis of triacylglycerol and protects from metabolism disorders. While, its precise involvement in colorectal cancer (CRC) progression remains inadequately understood. Our study demonstrated that knockout of Mogat2 in Apcmin/+ mice expedited intestinal tumor growth and progression, indicating that Mogat2 plays a tumor-suppressing role in CRC. Mechanically, Mogat2 deletion resulted in a significant alter the gut microbiota, while Fecal Microbiota Transplantation (FMT) experiments demonstrated that the gut microbiota in Mogat2 deleted mice promoted tumor growth. Furthermore, we identified Mogat2 as a functional regulator suppressing CRC cell proliferation and tumor growth by inhibiting the NF-κB signaling pathway in vivo. Collectively, these results provide novel insights into the protective double roles of Mogat2, inhibiting of NF-κB pathway and keeping gut microbiota homeostasis in colorectal cancer, which may help the development of novel cancer treatments for CRC
KLF4 Suppresses the Progression of Hepatocellular Carcinoma by Reducing Tumor ATP Synthesis through Targeting the Mir-206/RICTOR Axis
To address the increased energy demand, tumor cells undergo metabolic reprogramming, including oxidative phosphorylation (OXPHOS) and aerobic glycolysis. This study investigates the role of Kruppel-like factor 4 (KLF4), a transcription factor, as a tumor suppressor in hepatocellular carcinoma (HCC) by regulating ATP synthesis. Immunohistochemistry was performed to assess KLF4 expression in HCC tissues. Functional assays, such as CCK-8, EdU, and colony formation, as well as in vivo assays, including subcutaneous tumor formation and liver orthotopic xenograft mouse models, were conducted to determine the impact of KLF4 on HCC proliferation. Luciferase reporter assay and chromatin immunoprecipitation assay were utilized to evaluate the interaction between KLF4, miR-206, and RICTOR. The findings reveal low KLF4 expression in HCC, which is associated with poor prognosis. Both in vitro and in vivo functional assays demonstrate that KLF4 inhibits HCC cell proliferation. Mechanistically, it was demonstrated that KLF4 reduces ATP synthesis in HCC by suppressing the expression of RICTOR, a core component of mTORC2. This suppression promotes glutaminolysis to replenish the TCA cycle and increase ATP levels, facilitated by the promotion of miR-206 transcription. In conclusion, this study enhances the understanding of KLF4’s role in HCC ATP synthesis and suggests that targeting the KLF4/miR-206/RICTOR axis could be a promising therapeutic approach for anti-HCC therapeutics
PRMT3-mediated arginine methylation of IGF2BP1 promotes oxaliplatin resistance in liver cancer
Despite being an effective treatment for hepatocellular carcinoma (HCC), resistance to oxaliplatin presents a major obstacle. Here, the authors identify PRMT3-induced methylation of IGF2BP1 resulting in HEG1 stabilisation as a mechanism of oxaliplatin resistance in HCC