31,806 research outputs found
Molecular Dynamics Study of Bamboo-like Carbon Nanotube Nucleation
MD simulations based on an empirical potential energy surface were used to
study the nucleation of bamboo-like carbon nanotubes (BCNTs). The simulations
reveal that inner walls of the bamboo structure start to nucleate at the
junction between the outer nanotube wall and the catalyst particle. In
agreement with experimental results, the simulations show that BCNTs nucleate
at higher dissolved carbon concentrations (i.e., feedstock pressures) than
those where non-bamboolike carbon nanotubes are nucleated
Model of light collimation by photonic crystal surface modes
We propose a quantitative model explaining the mechanism of light collimation
by leaky surface modes that propagate on a corrugated surface around the output
of a photonic crystal waveguide. The dispersion relation of these modes is
determined for a number of surface terminations. Analytical results obtained on
the basis of the model are compared to those of rigorous numerical simulations.
Maximum collimation is shown to occur at frequency values corresponding to
excitation of surface modes whose wave number retains a nonzero real part.Comment: 6 pages, 7 figures. Version 2: corrected sign of k_x' (sections 4-6,
fig. 2), minor clarifications in section 2. Version 3: significant changes,
including reformulation of the model using the theory of aperture antennas,
as well as extended discussion of the accuracy of the mode
Spin interference and Fano effect in electron transport through a mesoscopic ring side-coupled with a quantum dot
We investigate the electron transport through a mesoscopic ring side-coupled
with a quantum dot(QD) in the presence of Rashba spin-orbit(SO) interaction. It
is shown that both the Fano resonance and the spin interference effects play
important roles in the electron transport properties. As the QD level is around
the Fermi energy, the total conductance shows typical Fano resonance line
shape. By applying an electrical gate voltage to the QD, the total transmission
through the system can be strongly modulated. By threading the mesoscopic ring
with a magnetic flux, the time-reversal symmetry of the system is broken, and a
spin polarized current can be obtained even though the incident current is
unpolarized.Comment: 5 pages, 5 figure
H-Alpha and Hard X-Ray Observations of a Two-Ribbon Flare Associated with a Filament Eruption
We perform a multi-wavelength study of a two-ribbon flare on 2002 September
29 and its associated filament eruption, observed simultaneously in the H-alpha
line by a ground-based imaging spectrograph and in hard X-rays by RHESSI. The
flare ribbons contain several H-alpha bright kernels that show different
evolutional behaviors. In particular, we find two kernels that may be the
footpoints of a loop. A single hard X-ray source appears to cover these two
kernels and to move across the magnetic neutral line. We explain this as a
result of the merging of two footpoint sources that show gradually asymmetric
emission owing to an asymmetric magnetic topology of the newly reconnected
loops. In one of the H-alpha kernels, we detect a continuum enhancement at the
visible wavelength. By checking its spatial and temporal relationship with the
hard X-ray emission, we ascribe it as being caused by electron beam
precipitation. In addition, we derive the line-of-sight velocity of the
filament plasma based on the Doppler shift of the filament-caused absorption in
the H-alpha blue wing. The filament shows rapid acceleration during the
impulsive phase. These observational features are in principal consistent with
the general scenario of the canonical two-ribbon flare model.Comment: 15 pages, 5 figures, accepted for publication in Ap
Superconducting gap symmetry of Ba0.6K0.4Fe2As2 studied by angle-resolved photoemission spectroscopy
We have performed high-resolution angle-resolved photoemission spectroscopy
on the optimally-doped BaKFeAs compound and determined
the accurate momentum dependence of the superconducting (SC) gap in four
Fermi-surface sheets including a newly discovered outer electron pocket at the
M point. The SC gap on this pocket is nearly isotropic and its magnitude is
comparable ( 11 meV) to that of the inner electron and hole
pockets (12 meV), although it is substantially larger than that of the
outer hole pocket (6 meV). The Fermi-surface dependence of the SC gap
value is basically consistent with () = coscos
formula expected for the extended s-wave symmetry. The observed finite
deviation from the simple formula suggests the importance of multi-orbital
effects.Comment: 4 pages, 3 figures, 1 tabl
Sub-wavelength focusing of high intensities in microfibre tips
Sub-wavelength efficient intensity confinement has been demonstrated in nanostructured optical microfibre tips. Focus Ion Beam (FIB) milling was used to nanostructure gold-coated optical microfibre tips and form apertures at the apex. Simulations were carried out to optimize the device design. Enhanced transmission efficiency (higher than 10-2) was achieved in spot sizes of ~λ/10. Nanostructured microfibre tips have the potential for a number of applications including optical recording, photolithography and scanning near-field optical microscopy (SNOM)
- …