31,806 research outputs found

    Molecular Dynamics Study of Bamboo-like Carbon Nanotube Nucleation

    Full text link
    MD simulations based on an empirical potential energy surface were used to study the nucleation of bamboo-like carbon nanotubes (BCNTs). The simulations reveal that inner walls of the bamboo structure start to nucleate at the junction between the outer nanotube wall and the catalyst particle. In agreement with experimental results, the simulations show that BCNTs nucleate at higher dissolved carbon concentrations (i.e., feedstock pressures) than those where non-bamboolike carbon nanotubes are nucleated

    Model of light collimation by photonic crystal surface modes

    Full text link
    We propose a quantitative model explaining the mechanism of light collimation by leaky surface modes that propagate on a corrugated surface around the output of a photonic crystal waveguide. The dispersion relation of these modes is determined for a number of surface terminations. Analytical results obtained on the basis of the model are compared to those of rigorous numerical simulations. Maximum collimation is shown to occur at frequency values corresponding to excitation of surface modes whose wave number retains a nonzero real part.Comment: 6 pages, 7 figures. Version 2: corrected sign of k_x' (sections 4-6, fig. 2), minor clarifications in section 2. Version 3: significant changes, including reformulation of the model using the theory of aperture antennas, as well as extended discussion of the accuracy of the mode

    Spin interference and Fano effect in electron transport through a mesoscopic ring side-coupled with a quantum dot

    Full text link
    We investigate the electron transport through a mesoscopic ring side-coupled with a quantum dot(QD) in the presence of Rashba spin-orbit(SO) interaction. It is shown that both the Fano resonance and the spin interference effects play important roles in the electron transport properties. As the QD level is around the Fermi energy, the total conductance shows typical Fano resonance line shape. By applying an electrical gate voltage to the QD, the total transmission through the system can be strongly modulated. By threading the mesoscopic ring with a magnetic flux, the time-reversal symmetry of the system is broken, and a spin polarized current can be obtained even though the incident current is unpolarized.Comment: 5 pages, 5 figure

    H-Alpha and Hard X-Ray Observations of a Two-Ribbon Flare Associated with a Filament Eruption

    Full text link
    We perform a multi-wavelength study of a two-ribbon flare on 2002 September 29 and its associated filament eruption, observed simultaneously in the H-alpha line by a ground-based imaging spectrograph and in hard X-rays by RHESSI. The flare ribbons contain several H-alpha bright kernels that show different evolutional behaviors. In particular, we find two kernels that may be the footpoints of a loop. A single hard X-ray source appears to cover these two kernels and to move across the magnetic neutral line. We explain this as a result of the merging of two footpoint sources that show gradually asymmetric emission owing to an asymmetric magnetic topology of the newly reconnected loops. In one of the H-alpha kernels, we detect a continuum enhancement at the visible wavelength. By checking its spatial and temporal relationship with the hard X-ray emission, we ascribe it as being caused by electron beam precipitation. In addition, we derive the line-of-sight velocity of the filament plasma based on the Doppler shift of the filament-caused absorption in the H-alpha blue wing. The filament shows rapid acceleration during the impulsive phase. These observational features are in principal consistent with the general scenario of the canonical two-ribbon flare model.Comment: 15 pages, 5 figures, accepted for publication in Ap

    Superconducting gap symmetry of Ba0.6K0.4Fe2As2 studied by angle-resolved photoemission spectroscopy

    Full text link
    We have performed high-resolution angle-resolved photoemission spectroscopy on the optimally-doped Ba0.6_{0.6}K0.4_{0.4}Fe2_2As2_2 compound and determined the accurate momentum dependence of the superconducting (SC) gap in four Fermi-surface sheets including a newly discovered outer electron pocket at the M point. The SC gap on this pocket is nearly isotropic and its magnitude is comparable (Δ\Delta \sim 11 meV) to that of the inner electron and hole pockets (\sim12 meV), although it is substantially larger than that of the outer hole pocket (\sim6 meV). The Fermi-surface dependence of the SC gap value is basically consistent with Δ\Delta(kk) = Δ\Delta0_0coskxk_xcoskyk_y formula expected for the extended s-wave symmetry. The observed finite deviation from the simple formula suggests the importance of multi-orbital effects.Comment: 4 pages, 3 figures, 1 tabl

    Sub-wavelength focusing of high intensities in microfibre tips

    No full text
    Sub-wavelength efficient intensity confinement has been demonstrated in nanostructured optical microfibre tips. Focus Ion Beam (FIB) milling was used to nanostructure gold-coated optical microfibre tips and form apertures at the apex. Simulations were carried out to optimize the device design. Enhanced transmission efficiency (higher than 10-2) was achieved in spot sizes of ~λ/10. Nanostructured microfibre tips have the potential for a number of applications including optical recording, photolithography and scanning near-field optical microscopy (SNOM)
    corecore