80,861 research outputs found

    Coherent Exciton Lasing in ZnSe/ZnCdSe Quantum Wells?

    Full text link
    A new mechanism for exciton lasing in ZnSe/ZnCdSe quantum wells is proposed. Lasing, occurring below the lowest exciton line, may be associated with a BCS-like condensed (coherent) exciton state. This state is most stable at low temperatures for densities in the transition region separating the exciton Bose gas and the coherent exciton state. Calculations show the gain region to lie below the exciton line and to be separated from the absorption regime by a transparency region of width, for example, about 80 meV for a 90 Angstrom ZnSe/Zn_(0.75)Cd_(0.25)Se quantum well. Experimental observation of the transparency region using differential spectroscopy would confirm this picture.Comment: 9 pages + 3 figs contained in 4 postscript files to appear Appl. Phys. Lett. March 13, 199

    The role of nonthermal electrons in the optical continuum of stellar flares

    Get PDF
    We explore the possibility that the continuum emission in stellar flares is powered by nonthermal electrons accelerated during the flares. We compute the continuum spectra from an atmospheric model for a dMe star, AD Leo, at its quiescent state, when considering the nonthermal excitation and ionisation effects by precipitating electron beams. The results show that if the electron beam has an energy flux large enough, the U band brightening and, in particular, the U-B colour are roughly comparable with observed values for a typical large flare. Moreover, for electron beams with a moderate energy flux, a decrease of the emission at the Paschen continuum appears. This can explain at least partly the continuum dimming observed in some stellar flares. Adopting an atmospheric model for the flaring state can further raise the continuum flux but it yields a spectral colour incomparable with observations. This implies that the nonthermal effects may play the chief role in powering the continuum emission in some stellar flares.Comment: 6 pages, 4 figures, LaTeX (psfigs.sty), to appear in MNRA

    Nanostructuring of glass micro-nanowires

    No full text
    In the past decade, glass fiber tapers with micron or sub-micron diameter have attracted much attention and found a wide range of applications in optics [1] including mode filtering, supercontinuum generation, high-Q resonators and resonant sensing, optical trapping and optical propulsion. Nanofabrication can add new application opportunities, like Fabry-Perot resonators, Scanning near-field optical microscopy (SNOM) probe and surface plasmon resonators

    One-dimentional magnonic crystal as a medium with magnetically tunable disorder on a periodical lattice

    Full text link
    We show that periodic magnetic nanostructures (magnonic crystals) represent an ideal system for studying excitations on disordered periodical lattices because of the possibility of controlled variation of the degree of disorder by varying the applied magnetic field. Ferromagnetic resonance (FMR) data collected inside minor hysteresis loops for a periodic array of Permalloy nanowires of alternating width and magnetic force microscopy images of the array taken after running each of these loops were used to establish convincing evidence that there is a strong correlation between the type of FMR response and the degree of disorder of the magnetic ground state. We found two types of dynamic responses: anti-ferromagnetic (AFM) and ferromagnetic (FM), which represent collective spin wave modes or collective magnonic states. Depending on the history of sample magnetization either AFM or FM state is either the fundamental FMR mode or represents a state of a magnetic defect on the artificial crystal. A fundamental state can be transformed into a defect one and vice versa by controlled magnetization of the sample.Comment: 4 pages, 3 figures, Letter paper, already submitted to PR
    corecore