48,998 research outputs found
What kinds of coordinate can keep the Hawking temperature invariant for the static spherically symmetric black hole?
By studying the Hawking radiation of the most general static spherically
symmetric black hole arising from scalar and Dirac particles tunnelling, we
find the Hawking temperature is invariant in the general coordinate
representation (\ref{arbitrary1}), which satisfies two conditions: a) its
radial coordinate transformation is regular at the event horizon; and b) there
is a time-like Killing vector.Comment: 10 page
Pinned modes in lossy lattices with local gain and nonlinearity
We introduce a discrete linear lossy system with an embedded "hot spot" (HS),
i.e., a site carrying linear gain and complex cubic nonlinearity. The system
can be used to model an array of optical or plasmonic waveguides, where
selective excitation of particular cores is possible. Localized modes pinned to
the HS are constructed in an implicit analytical form, and their stability is
investigated numerically. Stability regions for the modes are obtained in the
parameter space of the linear gain and cubic gain/loss. An essential result is
that the interaction of the unsaturated cubic gain and self-defocusing
nonlinearity can produce stable modes, although they may be destabilized by
finite amplitude perturbations. On the other hand, the interplay of the cubic
loss and self-defocusing gives rise to a bistability.Comment: Phys. Rev. E (in press
Bidirectional optimization of the melting spinning process
This is the author's accepted manuscript (under the provisional title "Bi-directional optimization of the melting spinning process with an immune-enhanced neural network"). The final published article is available from the link below. Copyright 2014 @ IEEE.A bidirectional optimizing approach for the melting spinning process based on an immune-enhanced neural network is proposed. The proposed bidirectional model can not only reveal the internal nonlinear relationship between the process configuration and the quality indices of the fibers as final product, but also provide a tool for engineers to develop new fiber products with expected quality specifications. A neural network is taken as the basis for the bidirectional model, and an immune component is introduced to enlarge the searching scope of the solution field so that the neural network has a larger possibility to find the appropriate and reasonable solution, and the error of prediction can therefore be eliminated. The proposed intelligent model can also help to determine what kind of process configuration should be made in order to produce satisfactory fiber products. To make the proposed model practical to the manufacturing, a software platform is developed. Simulation results show that the proposed model can eliminate the approximation error raised by the neural network-based optimizing model, which is due to the extension of focusing scope by the artificial immune mechanism. Meanwhile, the proposed model with the corresponding software can conduct optimization in two directions, namely, the process optimization and category development, and the corresponding results outperform those with an ordinary neural network-based intelligent model. It is also proved that the proposed model has the potential to act as a valuable tool from which the engineers and decision makers of the spinning process could benefit.National Nature Science Foundation of China, Ministry of Education of China, the Shanghai Committee of Science and Technology), and the Fundamental Research Funds for the Central Universities
A Novel Network NOMA Scheme for Downlink Coordinated Three-Point Systems
In this paper, we propose a network non-orthogonal multiple access (N-NOMA)
technique for the downlink coordinated multipoint (CoMP) communication scenario
of a cellular network, with randomly deployed users. In the considered N-NOMA
scheme, superposition coding (SC) is employed to serve cell-edge users as well
as users close to base stations (BSs) simultaneously, and distributed analog
beamforming by the BSs to meet the cell-edge user's quality of service (QoS)
requirements. The combination of SC and distributed analog beamforming
significantly complicates the expressions for the
signal-to-interference-plus-noise ratio (SINR) at the reveiver, which makes the
performance analysis particularly challenging. However, by using rational
approximations, insightful analytical results are obtained in order to
characterize the outage performance of the considered N-NOMA scheme. Computer
simulation results are provided to show the superior performance of the
proposed scheme as well as to demonstrate the accuracy of the analytical
results
- …