3 research outputs found

    Localized magnetic states in biased bilayer and trilayer graphene

    Full text link
    We study the localized magnetic states of impurity in biased bilayer and trilayer graphene. It is found that the magnetic boundary for bilayer and trilayer graphene presents the mixing features of Dirac and conventional fermion. For zero gate bias, as the impurity energy approaches the Dirac point, the impurity magnetization region diminishes for bilayer and trilayer graphene. When a gate bias is applied, the dependence of impurity magnetic states on the impurity energy exhibits a different behavior for bilayer and trilayer graphene due to the opening of a gap between the valence and the conduction band in the bilayer graphene with the gate bias applied. The magnetic moment and the corresponding magnetic transition of the impurity in bilayer graphene are also investigated.Comment: 16 pages,6 figure

    Charge and spin Hall effect in graphene with magnetic impurities

    Full text link
    We point out the existence of finite charge and spin Hall conductivities of graphene in the presence of a spin orbit interaction (SOI) and localized magnetic impurities. The SOI in graphene results in different transverse forces on the two spin channels yielding the spin Hall current. The magnetic scatterers act as spin-dependent barriers, and in combination with the SOI effect lead to a charge imbalance at the boundaries. As indicated here, the charge and spin Hall effects should be observable in graphene by changing the chemical potential close to the gap.Comment: 7 page
    corecore