37,175 research outputs found

    Weight function for the quantum affine algebra Uq(sl^3)U_q(\hat{sl}_3)

    Full text link
    We give a precise expression for the universal weight function of the quantum affine algebra Uq(sl^3)U_q(\hat{sl}_3). The calculations use the technique of projecting products of Drinfeld currents on the intersections of Borel subalgebras.Comment: 28 page

    Three realizations of quantum affine algebra Uq(A2(2))U_q(A_2^{(2)})

    Full text link
    In this article we establish explicit isomorphisms between three realizations of quantum twisted affine algebra Uq(A2(2))U_q(A_2^{(2)}): the Drinfeld ("current") realization, the Chevalley realization and the so-called RLLRLL realization, investigated by Faddeev, Reshetikhin and Takhtajan.Comment: 15 page

    Recurrent Coronal Jets Induced by Repetitively Accumulated Electric Currents

    Full text link
    Three extreme-ultraviolet (EUV) jets recurred in about one hour on 2010 September 17 in the following magnetic polarity of active region 11106. The EUV jets were observed by the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO). The Helioseismic and Magnetic Imager (HMI) on board SDO measured the vector magnetic field, from which we derive the magnetic flux evolution, the photospheric velocity field, and the vertical electric current evolution. The magnetic configuration before the jets is derived by the nonlinear force-free field (NLFFF) extrapolation. We derive that the jets are above a pair of parasitic magnetic bipoles which are continuously driven by photospheric diverging flows. The interaction drove the build up of electric currents that we indeed observed as elongated patterns at the photospheric level. For the first time, the high temporal cadence of HMI allows to follow the evolution of such small currents. In the jet region, we found that the integrated absolute current peaks repetitively in phase with the 171 A flux evolution. The current build up and its decay are both fast, about 10 minutes each, and the current maximum precedes the 171 A by also about 10 minutes. Then, HMI temporal cadence is marginally fast enough to detect such changes. The photospheric current pattern of the jets is found associated to the quasi-separatrix layers deduced from the magnetic extrapolation. From previous theoretical results, the observed diverging flows are expected to build continuously such currents. We conclude that magnetic reconnection occurs periodically, in the current layer created between the emerging bipoles and the large scale active region field. It induced the observed recurrent coronal jets and the decrease of the vertical electric current magnitude.Comment: 10 pages, 7 figures, accepted for publication in A&

    Quantum state preparation and control of single molecular ions

    Full text link
    Preparing molecules at rest and in a highly pure quantum state is a long standing dream in chemistry and physics, so far achieved only for a select set of molecules in dedicated experimental setups. Here, a quantum-limited combination of mass spectrometry and Raman spectroscopy is proposed that should be applicable to a wide range of molecular ions. Excitation of electrons in the molecule followed by uncontrolled decay and branching into several lower energy states is avoided. Instead, the molecule is always connected to rotational states within the electronic and vibrational ground-state manifold, while a co-trapped atomic ion provides efficient entropy removal and allows for extraction of information on the molecule. The outlined techniques might enable preparation, manipulation and measurement of a large multitude of molecular ion species with the same instrument, with applications including, but not limited to, precise determination of molecular properties and fundamental tests of physics.Comment: 12 pages, 2 figures, reformatted for resubmissio

    Heavy Quark diffusion from lattice QCD spectral functions

    Get PDF
    We analyze the low frequency part of charmonium spectral functions on large lattices close to the continuum limit in the temperature region 1.5≲T/Tc≲31.5\lesssim T/T_c\lesssim 3 as well as for T≃0.75TcT \simeq 0.75T_c. We present evidence for the existence of a transport peak above TcT_c and its absence below TcT_c. The heavy quark diffusion constant is then estimated using the Kubo formula. As part of the calculation we also determine the temperature dependence of the signature for the charmonium bound state in the spectral function and discuss the fate of charmonium states in the hot medium.Comment: 4 pages, Proceedings for Quark Matter 2011 Conference, May 23-28, 2011, Annecy, Franc

    Possible Molecular States of Ds∗Dˉs∗D^{*}_s\bar{D}^{*}_s System and Y(4140)

    Full text link
    The interpretation of Y(4140) as a Ds∗Dˉs∗D^{*}_s\bar{D}^{*}_s molecule is studied dynamically in the one boson exchange approach, where σ\sigma, η\eta and ϕ\phi exchange are included. Ten allowed Ds∗Dˉs∗D^{*}_s\bar{D}^{*}_s states with low spin parity are considered, we find that the JPC=0++J^{PC}=0^{++}, 1+−1^{+-}, 0−+0^{-+}, 2++2^{++} and 1−−1^{--} Ds∗Dˉs∗D^{*}_s\bar{D}^{*}_s configurations are most tightly bound. We suggest the most favorable quantum numbers are JPC=0++J^{PC}=0^{++} for Y(4140) as a Ds∗Dˉs∗D^{*}_s\bar{D}^{*}_s molecule, however, JPC=0−+J^{PC}=0^{-+} and 2++2^{++} can not be excluded. We propose to search for the 1+−1^{+-} and 1−−1^{--} partners in the J/ψηJ/\psi\eta and J/ψη′J/\psi\eta' final states, which is an important test of the molecular hypothesis of Y(4140) and the reasonability of our model. The 0++0^{++} Bs∗Bˉs∗B^{*}_s\bar{B}^{*}_s molecule is deeply bound, experimental search in the Υ(1S)ϕ\Upsilon(1S)\phi channel at Tevatron and LHC is suggested.Comment: 13 pages,2 figure

    Investigation of the Photocatalytic Degradation of Ethanol and Acetone

    Get PDF
    In-situ transmission Fourier-transform infrared spectroscopy has been used to study the photocatalytic oxidation of acetone, ethanol and the interaction between acetone and ethanol. Compared with the degradation of acetone alone, it cannot be described by Langmuir-Hinshelwood equation in presence of ethanol. The presence of ethanol reduces the initial degradation rate of acetone and the inhibition increases with increasing of ethanol in the system. Acetone also inhibits the degradation of ethanol but it still can be described by the L-H equation. Acetaldehyde in the system comes from the degradation of ethanol, the behavior of production and consumption of which is affected by the amount of ethanol and acetone in the mixture. Temperature significantly affects the degradation of organic compounds in the mixture. Increasing the temperature accelerates the degradation of ethanol and acetone as well as the degradation of acetaldehyde, an intermediate produced in the system. The flux of the reaction system has little effect on the photocatalytic process of organic matter
    • …
    corecore