80 research outputs found

    River Dolphins Can Act as Population Trend Indicators in Degraded Freshwater Systems

    Get PDF
    Conservation attention on charismatic large vertebrates such as dolphins is often supported by the suggestion that these species represent surrogates for wider biodiversity, or act as indicators of ecosystem health. However, their capacity to act as indicators of patterns or trends in regional biodiversity has rarely been tested. An extensive new dataset of >300 last-sighting records for the Yangtze River dolphin or baiji and two formerly economically important fishes, the Yangtze paddlefish and Reeves’ shad, all of which are probably now extinct in the Yangtze, was collected during an interview survey of fishing communities across the middle-lower Yangtze drainage. Untransformed last-sighting date frequency distributions for these species show similar decline curves over time, and the linear gradients of transformed last-sighting date series are not significantly different from each other, demonstrating that these species experienced correlated population declines in both timing and rate of decline. Whereas species may be expected to respond differently at the population level even in highly degraded ecosystems, highly vulnerable (e.g. migratory) species can therefore display very similar responses to extrinsic threats, even if they represent otherwise very different taxonomic, biological and ecological groupings. Monitoring the status of river dolphins or other megafauna therefore has the potential to provide wider information on the status of other threatened components of sympatric freshwater biotas, and so represents a potentially important monitoring tool for conservation management. We also show that interview surveys can provide robust quantitative data on relative population dynamics of different species

    Trace elements accumulation in the Yangtze finless porpoise (Neophocaena asiaeorientalis asiaeorientalis) - A threat to the endangered freshwater cetacean

    Get PDF
    As a freshwater cetacean with a population of only approximately 1000 individuals, the Yangtze finless porpoise (Neophocaena asiaeorientalis asiaeorientalis) is threatened by water pollution. However, studies of contaminants accumulated in the Yangtze finless porpoise remain limited. In this study, concentrations of 11 trace elements in different tissues sampled from 38 Yangtze finless porpoise individuals were determined. The elements V, Ni, Zn, and Pb were mostly accumulated in the epidermis, Cr, Mn, Cu, Se, and Hg were mostly accumulated in the liver, while As and Cd were mostly accumulated in the blubber and kidney, respectively. The results show that trace elements concentrations in the epidermis do not reliably indicate concentrations in internal tissues of the Yangtze finless porpoises. Positive correlations between different trace elements concentrations in tissues with the highest concentrations suggested the similar mechanism of metabolism or uptake pathway of those elements. Concentrations of As, Se, Cd, Hg, and Pb in the tissues with the highest concentrations were significantly positively correlated with the body length. Furthermore, significantly higher trace elements concentrations were measured in the reproductive organs of females (ovaries) than males (testis). However, no significant difference of trace elements concentrations between habitats was found. In consideration of higher Hg and Cd level in Yangtze finless porpoises compared to other small cetaceans, the potential risk of Hg (in particular) and Cd toxicity to Yangtze finless porpoises needs further attention. (C) 2019 Elsevier B.V. All rights reserved.</p

    The Possible Effects of High Vessel Traffic on the Physiological Parameters of the Critically Endangered Yangtze Finless Porpoise (Neophocaena asiaeorientalis ssp. asiaeorientalis)

    Get PDF
    Background: Poyang is the largest freshwater lake in China, where the acoustic environment and space for the critically endangered Yangtze finless porpoises (YFPs) has been altered by heavy vessel traffic and dredging activities. The density of vessel and the rate of dredging increases annually, especially in the area with the highest density of YFPs. The heavy vessel traffic can cause an increase in the physical activities and direct physical injuries to the YFPs. Furthermore, noise is a potent stressor to all cetaceans irrespective of age and can compromise all their physiological functions. The objective of this study was to examine the possible effects of heavy vessel traffic and dredging on the biochemistry, hematology, adrenal, thyroid, and reproductive hormones of two different YFP populations. One population was living in Poyang Lake and the second living in the Tian-E-Zhou Oxbow which is a semi-natural resserve.Results: The results showed statistically significantly higher levels of serum cortisol, fT3, fT4, and lowered testosterone in both adult and juvenile YFPs living in Poyang Lake vs. adult YFPs living in the Tian-E-Zhou Oxbow. The serum biochemical parameters (Aspartate Amino Transferase, Alkaline Phosphatase, High Density Lipoprotein cholesterol ratio, Globulin, Uric acid, Glucose, K+, and Amylase) and the hematology parameters (Red Blood Cells, Hematocrit, Mean Corpuscular Volume, White Blood Cells, and Eosinophils) were statistically significantly higher in the adult Poyang Lake YFPs vs. adult Tian-E-Zhou Oxbow YFPs. On the other hand, adult males of the Tian-E-Zhou Oxbow also showed significantly higher levels of the serum biochemical parameters (Total Cholesterol, Light Density Lipoprotein cholesterol, Direct Bilirubin, Albumin, Lactate Dehydrogenase, CO2, and Na+) and the blood parameters (Mean Corpuscular Hemoglobin and Mean Corpuscular Hemoglobin Concentration). In Poyang Lake YFPs, various parameters showed significantly positive (fT4, amylase, neutrophil, Ca+2) or negative (total protein, lymphocyte) correlations with cortisol levels.Conclusions: The hyperactivity of adrenal glands in response to heavy vessel traffic and dredging resulted in significantly elevated cortisol levels in Poyang Lake YFPs. The higher cortisol level could possibly have affected various hormonal, hematological, and biochemical parameters, and ultimately the YFPs physiology

    Experimental Observation of Efficient Nonreciprocal Mode Transitions via Spatiotemporally-Modulated Acoustic Metamaterials

    Full text link
    In lossless acoustic systems, mode transitions are always time-reversible, consistent with Lorentz reciprocity, giving rise to symmetric sound manipulation in space-time. To overcome this fundamental limitation and break space-time symmetry, nonreciprocal sound steering is realized by designing and experimentally implementing spatiotemporally-modulated acoustic metamaterials. Relying on no slow mechanical parts, unstable and noisy airflow or complicated piezoelectric array, our mechanism uses the coupling between an ultrathin membrane and external electromagnetic field to realize programmable, dynamic control of acoustic impedance in a motionless and noiseless manner. The fast and flexible impedance modulation at the deeply subwavelength scale enabled by our compact metamaterials provides an effective unidirectional momentum in space-time to realize irreversible transition in k-{\omega} space between different diffraction modes. The nonreciprocal wave-steering functionality of the proposed metamaterial is elucidated by theoretically deriving the time-varying acoustic response and demonstrated both numerically and experimentally via two distinctive examples of unidirectional evanescent wave conversion and nonreciprocal blue-shift focusing. This work can be further extended into the paradigm of Bloch waves and impact other vibrant domains, such as non-Hermitian topological acoustics and parity-time-symmetric acoustics.Comment: 15 pages, 4 figure

    Topographical distribution of blubber in finless porpoises (Neophocaena asiaeorientalis sunameri): a result from adapting to living in coastal waters

    Get PDF
    Background: Blubber has many functions, among which energy storage, thermoregulation, buoyancy, and hydrodynamic streamlining are the most frequently cited. Within and between taxa, variations in its structure and distribution likely reflect different adaptations of a species to its life history requirements, environment, health, and function. Here, we use ultrasound to describe the distribution of blubber in the finless porpoise (Neophocaena asiaeorientalis sunameri) based on examinations of 34 fresh cadavers recovered as accidental fisheries bycatch

    Marine mammal morphometrics: 3D modeling and estimation validation

    Get PDF
    Techniques of 3D modeling have earned increasing popularity in scientific studies as they offered unprecedented traits in representing objects. As with all mathematical models, the 3D model will be useful once its accuracy has been validated with direct measurements and the robustness of its predictive capability tested. Although measures of body mass and volume are essential to comprehend the life history of animals, such morphometrics, especially total volume, are challenging to obtain from marine mammals due to their elusive nature, aquatic lifestyle, and large size. In this study, accurate measurements of body volume were directly detected from fresh carcasses of eleven finless porpoises (Neophocaena asiaeorientalis sunameri) and used to validate 3D models recreated from the same animals using Blender 3D graphics. Published models using truncated cones or elliptical shapes, based on 3, 5, 8, or 19 measurements of girths or heights &amp; widths along the body, were also applied to porpoises to verify their accuracy. The Blender-generated 3D model produced the most accurate estimates of body volume compared to conventional truncated models, with a mean error of only 2.5% to the direct volume measurements. When photogrammetric images are available, the model can predict the body volumes based on total length alone. Similar accuracy was possible with the elliptical model using 19 height &amp; width measurements (5% increments in total length). However, significant (p &lt; 0.001) inaccuracy resulted from truncated models with 3, 5, or 8 girth measurements and elliptical models with 3 or 5 height &amp; width measurements, and the accuracy of these models also decreased significantly as the number of measurement sites was reduced. Moreover, Blender 3D models can be extrapolated to animals with images absent, and such predicted volumes were tested to be trustworthy (overall skill = 0.998, r = 0.998, p &lt; 0.01). Therefore, we recommend that researchers use either digital 3D models or elliptical models with 5% increments sectioning the torso to obtain accurate estimates of the body volumes of free-ranging marine mammals

    Unveiling causal attention in dogs' eyes with smart eyewear

    Get PDF
    Our goals are to better understand dog cognition, and to support others who share this interest. Existing investigation methods predominantly rely on human-manipulated experiments to examine dogs’ behavioral responses to visual stimuli such as human gestures. As a result, existing experimental paradigms are usually constrained to in-lab environments and may not reveal the dog’s responses to real-world visual scenes. Moreover, visual signals pertaining to dog behavioral responses are empirically derived from observational evidence, which can be prone to subjective bias and may lead to controversies. We aim to overcome or reduce the existing limitations of dog cognition studies by investigating a challenging issue: identifying the visual signal(s) from dog eye motion that can be utilized to infer causal explanations of its behaviors, namely estimating causal attention. To this end, we design a deep learning framework named Causal AtteNtIon NEtwork (CANINE) to unveil the dogs’ causal attention mechanism, inspired by the recent advance in causality analysis with deep learning. Equipped with CANINE, we developed the first eyewear device to enable inference on the vision-related behavioral causality of canine wearers. We demonstrate the technical feasibility of the proposed CANINE glasses through their application in multiple representative experimental scenarios of dog cognitive study. Various in-field trials are also performed to demonstrate the generality of the CANINE eyewear in real-world scenarios. With the proposed CANINE glasses, we collect the first large-scale dataset, named DogsView, which consists of automatically generated annotations on the canine wearer’s causal attention across a wide range of representative scenarios. The DogsView dataset is available online to facilitate research
    • …
    corecore