121 research outputs found

    FreeCOS: Self-Supervised Learning from Fractals and Unlabeled Images for Curvilinear Object Segmentation

    Full text link
    Curvilinear object segmentation is critical for many applications. However, manually annotating curvilinear objects is very time-consuming and error-prone, yielding insufficiently available annotated datasets for existing supervised methods and domain adaptation methods. This paper proposes a self-supervised curvilinear object segmentation method that learns robust and distinctive features from fractals and unlabeled images (FreeCOS). The key contributions include a novel Fractal-FDA synthesis (FFS) module and a geometric information alignment (GIA) approach. FFS generates curvilinear structures based on the parametric Fractal L-system and integrates the generated structures into unlabeled images to obtain synthetic training images via Fourier Domain Adaptation. GIA reduces the intensity differences between the synthetic and unlabeled images by comparing the intensity order of a given pixel to the values of its nearby neighbors. Such image alignment can explicitly remove the dependency on absolute intensity values and enhance the inherent geometric characteristics which are common in both synthetic and real images. In addition, GIA aligns features of synthetic and real images via the prediction space adaptation loss (PSAL) and the curvilinear mask contrastive loss (CMCL). Extensive experimental results on four public datasets, i.e., XCAD, DRIVE, STARE and CrackTree demonstrate that our method outperforms the state-of-the-art unsupervised methods, self-supervised methods and traditional methods by a large margin. The source code of this work is available at https://github.com/TY-Shi/FreeCOS.Comment: Accepted by ICCV 202

    Resource-Efficient Cooperative Online Scalar Field Mapping via Distributed Sparse Gaussian Process Regression

    Full text link
    Cooperative online scalar field mapping is an important task for multi-robot systems. Gaussian process regression is widely used to construct a map that represents spatial information with confidence intervals. However, it is difficult to handle cooperative online mapping tasks because of its high computation and communication costs. This letter proposes a resource-efficient cooperative online field mapping method via distributed sparse Gaussian process regression. A novel distributed online Gaussian process evaluation method is developed such that robots can cooperatively evaluate and find observations of sufficient global utility to reduce computation. The bounded errors of distributed aggregation results are guaranteed theoretically, and the performances of the proposed algorithms are validated by real online light field mapping experiments

    OTOV2: Automatic, Generic, User-Friendly

    Full text link
    The existing model compression methods via structured pruning typically require complicated multi-stage procedures. Each individual stage necessitates numerous engineering efforts and domain-knowledge from the end-users which prevent their wider applications onto broader scenarios. We propose the second generation of Only-Train-Once (OTOv2), which first automatically trains and compresses a general DNN only once from scratch to produce a more compact model with competitive performance without fine-tuning. OTOv2 is automatic and pluggable into various deep learning applications, and requires almost minimal engineering efforts from the users. Methodologically, OTOv2 proposes two major improvements: (i) Autonomy: automatically exploits the dependency of general DNNs, partitions the trainable variables into Zero-Invariant Groups (ZIGs), and constructs the compressed model; and (ii) Dual Half-Space Projected Gradient (DHSPG): a novel optimizer to more reliably solve structured-sparsity problems. Numerically, we demonstrate the generality and autonomy of OTOv2 on a variety of model architectures such as VGG, ResNet, CARN, ConvNeXt, DenseNet and StackedUnets, the majority of which cannot be handled by other methods without extensive handcrafting efforts. Together with benchmark datasets including CIFAR10/100, DIV2K, Fashion-MNIST, SVNH and ImageNet, its effectiveness is validated by performing competitively or even better than the state-of-the-arts. The source code is available at https://github.com/tianyic/only_train_once.Comment: Published on ICLR 2023. Remark here that a few images of dependency graphs can not be included in arXiv due to exceeding size limi

    LoRAShear: Efficient Large Language Model Structured Pruning and Knowledge Recovery

    Full text link
    Large Language Models (LLMs) have transformed the landscape of artificial intelligence, while their enormous size presents significant challenges in terms of computational costs. We introduce LoRAShear, a novel efficient approach to structurally prune LLMs and recover knowledge. Given general LLMs, LoRAShear at first creates the dependency graphs over LoRA modules to discover minimally removal structures and analyze the knowledge distribution. It then proceeds progressive structured pruning on LoRA adaptors and enables inherent knowledge transfer to better preserve the information in the redundant structures. To recover the lost knowledge during pruning, LoRAShear meticulously studies and proposes a dynamic fine-tuning schemes with dynamic data adaptors to effectively narrow down the performance gap to the full models. Numerical results demonstrate that by only using one GPU within a couple of GPU days, LoRAShear effectively reduced footprint of LLMs by 20% with only 1.0% performance degradation and significantly outperforms state-of-the-arts. The source code will be available at https://github.com/microsoft/lorashear

    Merging Experts into One: Improving Computational Efficiency of Mixture of Experts

    Full text link
    Scaling the size of language models usually leads to remarkable advancements in NLP tasks. But it often comes with a price of growing computational cost. Although a sparse Mixture of Experts (MoE) can reduce the cost by activating a small subset of parameters (e.g., one expert) for each input, its computation escalates significantly if increasing the number of activated experts, limiting its practical utility. Can we retain the advantages of adding more experts without substantially increasing the computational costs? In this paper, we first demonstrate the superiority of selecting multiple experts and then propose a computation-efficient approach called \textbf{\texttt{Merging Experts into One}} (MEO), which reduces the computation cost to that of a single expert. Extensive experiments show that MEO significantly improves computational efficiency, e.g., FLOPS drops from 72.0G of vanilla MoE to 28.6G (MEO). Moreover, we propose a token-level attention block that further enhances the efficiency and performance of token-level MEO, e.g., 83.3\% (MEO) vs. 82.6\% (vanilla MoE) average score on the GLUE benchmark. Our code will be released upon acceptance. Code will be released at: \url{https://github.com/Shwai-He/MEO}.Comment: EMNLP 2023 Main Conference (Oral

    Integrating Stock Features and Global Information via Large Language Models for Enhanced Stock Return Prediction

    Full text link
    The remarkable achievements and rapid advancements of Large Language Models (LLMs) such as ChatGPT and GPT-4 have showcased their immense potential in quantitative investment. Traders can effectively leverage these LLMs to analyze financial news and predict stock returns accurately. However, integrating LLMs into existing quantitative models presents two primary challenges: the insufficient utilization of semantic information embedded within LLMs and the difficulties in aligning the latent information within LLMs with pre-existing quantitative stock features. We propose a novel framework consisting of two components to surmount these challenges. The first component, the Local-Global (LG) model, introduces three distinct strategies for modeling global information. These approaches are grounded respectively on stock features, the capabilities of LLMs, and a hybrid method combining the two paradigms. The second component, Self-Correlated Reinforcement Learning (SCRL), focuses on aligning the embeddings of financial news generated by LLMs with stock features within the same semantic space. By implementing our framework, we have demonstrated superior performance in Rank Information Coefficient and returns, particularly compared to models relying only on stock features in the China A-share market.Comment: 8 pages, International Joint Conferences on Artificial Intelligenc

    Synthesis and Characterization of Structure-Controlled Micro-/Nanocomposite TiO 2

    Get PDF
    A series of structure-controlled composite TiO2 fibers combining micro- and nanostructures (hereafter, micro-/nanocomposite) were fabricated using a combination of electrospinning and calcination methods, and their photocatalytic activities were investigated. Smooth microscale fibers were obtained by electrospinning a precursor solution containing tetrabutyl titanate and TiF4. TiO2 nanocrystals formed on the microfibers with the help of HF which was produced from the decomposition of TiF4 in calcination. The size and quantity of TiO2 nanocrystals can be controlled by tuning the mass ratio of TiF4 in the sol-gel precursor solutions and the calcination time. The obtained micro-/nanocomposite TiO2 fibers were found to exhibit enhanced photocatalytic properties when compared with the bare microfibers. These micro-/nanocomposite structures exhibit the advantages of both the nanocrystals and microfibers, which will lead to new developments in photocatalysis

    Towards Automatic Neural Architecture Search within General Super-Networks

    Full text link
    Existing neural architecture search (NAS) methods typically rely on pre-specified super deep neural networks (super-networks) with handcrafted search spaces beforehand. Such requirements make it challenging to extend them onto general scenarios without significant human expertise and manual intervention. To overcome the limitations, we propose the third generation of Only-Train-Once (OTOv3). OTOv3 is perhaps the first automated system that trains general super-networks and produces high-performing sub-networks in the one shot manner without pretraining and fine-tuning. Technologically, OTOv3 delivers three noticeable contributions to minimize human efforts: (i) automatic search space construction for general super-networks; (ii) a Hierarchical Half-Space Projected Gradient (H2SPG) that leverages the dependency graph to ensure the network validity during optimization and reliably produces a solution with both high performance and hierarchical group sparsity; and (iii) automatic sub-network construction based on the super-network and the H2SPG solution. Numerically, we demonstrate the effectiveness of OTOv3 on a variety of super-networks, including RegNet, StackedUnets, SuperResNet, and DARTS, over benchmark datasets such as CIFAR10, Fashion-MNIST, ImageNet, STL-10, and SVNH. The sub-networks computed by OTOv3 achieve competitive even superior performance compared to the super-networks and other state-of-the-arts. The library will be released at https://github.com/tianyic/only_train_once

    TSE-GAN: strain elastography using generative adversarial network for thyroid disease diagnosis

    Get PDF
    Over the past 35 years, studies conducted worldwide have revealed a threefold increase in the incidence of thyroid cancer. Strain elastography is a new imaging technique to identify benign and malignant thyroid nodules due to its sensitivity to tissue stiffness. However, there are certain limitations of this technique, particularly in terms of standardization of the compression process, evaluation of results and several assumptions used in commercial strain elastography modes for the purpose of simplifying imaging analysis. In this work, we propose a novel conditional generative adversarial network (TSE-GAN) for automatically generating thyroid strain elastograms, which adopts a global-to-local architecture to improve the ability of extracting multi-scale features and develops an adaptive deformable U-net structure in the sub-generator to apply effective deformation. Furthermore, we introduce a Lab-based loss function to induce the networks to generate realistic thyroid elastograms that conform to the probability distribution of the target domain. Qualitative and quantitative assessments are conducted on a clinical dataset provided by Shanghai Sixth People’s Hospital. Experimental results demonstrate that thyroid elastograms generated by the proposed TSE-GAN outperform state-of-the-art image translation methods in meeting the needs of clinical diagnostic applications and providing practical value
    • …
    corecore