72 research outputs found

    Cross-corpus Readability Compatibility Assessment for English Texts

    Full text link
    Text readability assessment has gained significant attention from researchers in various domains. However, the lack of exploration into corpus compatibility poses a challenge as different research groups utilize different corpora. In this study, we propose a novel evaluation framework, Cross-corpus text Readability Compatibility Assessment (CRCA), to address this issue. The framework encompasses three key components: (1) Corpus: CEFR, CLEC, CLOTH, NES, OSP, and RACE. Linguistic features, GloVe word vector representations, and their fusion features were extracted. (2) Classification models: Machine learning methods (XGBoost, SVM) and deep learning methods (BiLSTM, Attention-BiLSTM) were employed. (3) Compatibility metrics: RJSD, RRNSS, and NDCG metrics. Our findings revealed: (1) Validated corpus compatibility, with OSP standing out as significantly different from other datasets. (2) An adaptation effect among corpora, feature representations, and classification methods. (3) Consistent outcomes across the three metrics, validating the robustness of the compatibility assessment framework. The outcomes of this study offer valuable insights into corpus selection, feature representation, and classification methods, and it can also serve as a beginning effort for cross-corpus transfer learning.Comment: 14 pages,17 figure

    Analysis on Factors Affecting Performance of Indexing Investment

    Get PDF
    This article analyzes the current status of indexing investment performance in China and the characteristics of fund managers and fund management companies. It also theoretically analyzes the influence of these factors on indexing investment performance in terms of fund governance structure, characteristics of fund managers and fund companies, stock selection ability and timing ability. Next, it uses multiple regression analysis from three dimensions mentioned above to verify the influencing factors on investment performance. The results show that in terms of passive investment, fund tracking error is significantly negatively correlated with institutional holdings and fund managers’ stock selection ability, and significantly positively correlated with fund managers’ timing ability. Female fund managers’ tracking errors are smaller. Institutional investors play a positive role in promoting the performance of active investment. The fund manager’s stock selection ability can effectively reduce the fund’s sensitivity to target index fluctuations, and the fund manager’s timing ability can significantly improve the performance of fund allocation. Funds allocated by female fund managers will be less sensitive to target index fluctuations. Keywords: indexing investment, performance, fund management, fund managers DOI: 10.7176/RJFA/12-22-01 Publication date: November 30th 202

    Behavior Characteristics of Indexing Investment Entities

    Get PDF
    Based on the characteristics of investor behavior, this article analyzes the impact of institutional investors and investor sentiment on the liquidity, profitability and stability of the capital market, and analyzes the impact of investor overreaction on the market. Through multiple regression analysis, it is verified that the holding ratio of institutional investors has a significantly negative relationship with the turnover rate of funds, and it has a positive relationship with the annual rate of return of the fund and the annual volatility of the fund. Investor sentiment shows a positive correlation with the turnover rate of funds, the yield of the fund and the volatility of the fund. Through quantile regression, it is found that when the volatility of an index is at a high level, it is more susceptible to the negative impact of the previous trading volume. Keywords: behaviour characteristics, indexing investment, investor sentiment, capital market DOI: 10.7176/EJBM/13-22-01 Publication date: November 30th 202

    Fast generation of mock galaxy catalogues with COLA

    Full text link
    We investigate the feasibility of using COmoving Lagrangian Acceleration (COLA) technique to efficiently generate galaxy mock catalogues that can accurately reproduce the statistical properties of observed galaxies. Our proposed scheme combines the subhalo abundance matching (SHAM) procedure with COLA simulations, utilizing only three free parameters: the scatter magnitude (σscat\sigma_{\rm scat}) in SHAM, the initial redshift (zinitz_{\rm init}) of the COLA simulation, and the time stride (dada) used by COLA. In this proof-of-concept study, we focus on a subset of BOSS CMASS NGC galaxies within the redshift range z∈[0.45,0.55]z\in [0.45, 0.55]. We perform GADGET\mathtt{GADGET} simulation and low-resolution COLA simulations with various combinations of (zinit,da)(z_{\rm init}, da), each using 102431024^{3} particles in an 800 h−1Mpc800~h^{-1}{\rm Mpc} box. By minimizing the difference between COLA mock and CMASS NGC galaxies for the monopole of the two-point correlation function (2PCF), we obtain the optimal σscat\sigma_{\rm scat}. We have found that by setting zinit=29z_{\rm init}=29 and da=1/30da=1/30, we achieve a good agreement between COLA mock and CMASS NGC galaxies within the range of 4 to 20 h−1Mpc20~h^{-1}{\rm Mpc}, with a computational cost two orders of magnitude lower than that of the N-body code. Moreover, a detailed verification is performed by comparing various statistical properties, such as anisotropic 2PCF, three-point clustering, and power spectrum multipoles, which shows similar performance between GADGET mock and COLA mock catalogues with the CMASS NGC galaxies. Furthermore, we assess the robustness of the COLA mock catalogues across different cosmological models, demonstrating consistent results in the resulting 2PCFs. Our findings suggest that COLA simulations are a promising tool for efficiently generating mock catalogues for emulators and machine learning analyses in exploring the large-scale structure of the Universe.Comment: 24 pages, 14 figures, 4 table

    The Virulence-Related MYR1 Protein of Toxoplasma gondii as a Novel DNA Vaccine Against Toxoplasmosis in Mice

    Get PDF
    Toxoplasma gondii causes serious public health problems, but there is no effective treatment strategy against it currently. DNA vaccines have shown promising findings in this regard. MYR1 is a new virulence factor identified in T. gondii that may have potential as a DNA vaccine candidate. We constructed a recombinant eukaryotic plasmid, pVAX1-MYR1, as a DNA vaccine, injected it intramuscularly into BALB/c mice, and evaluated its immunoprotective effects. pVAX1-MYR1 immunization induced a sequential Th1 and Th2 T-cell response, as indicated by high levels of Th1 and mixed Th1/Th2 cytokines at 2 and 6 weeks after immunization, respectively. These findings were corroborated by the antibody assays too. In addition, increased levels of antigen-specific lymphocyte proliferation, CD4+ and CD8+ T lymphocytes, cytotoxic T lymphocyte activity and cytokine (IFN-γ, IL-12, and IL-10) production were also observed in the immunized mice. These findings showed that pVAX1-MYR1 stimulated humoral and cellular immune responses in the immunized mice. The increased production of IFN-γ and IL-12 was correlated with increased expression of the T-bet and p65 genes of the NF-κB pathway. However, no significant increase was observed in the level of IL-4. The survival of mice immunized with pVAX1-MYR1 was also significantly prolonged compared with the control group mice. Based on all the above findings, the current study proposes that pVAX1-MYR1 can induce a T. gondii-specific immune response and should therefore be considered as a promising vaccine candidate against toxoplasmosis. To the best of our knowledge, this is the first report to evaluate the immunoprotective value of an MYR1-based DNA vaccine against T. gondii

    Constitutive androstane receptor 1 is constitutively bound to chromatin and ‘primed’ for transactivation in hepatocytes

    Get PDF
    The constitutive androstane receptor (CAR) is a xenobiotic sensor expressed in hepatocytes that activates genes involved in drug metabolism, lipid homeostasis, and cell proliferation. Much progress has been made in understanding the mechanism of activation of human CAR by drugs and xenobiotics. However, many aspects of the activation pathway remain to be elucidated. In this report, we have used viral constructs to express human CAR, its splice variants, and mutant CAR forms in hepatocytes from Car-/- mice in vitro and in vivo. We demonstrate CAR expression rescued the ability of Car-/- hepatocytes to respond to a wide range of CAR activators including phenobarbital. Additionally, two major splice isoforms of human CAR, CAR2 and CAR3, were inactive with almost all the agents tested. In contrast to the current model of CAR activation, ectopic CAR1 is constitutively localised in the nucleus and is loaded onto Cyp2b10 gene in the absence of an inducing agent. In studies to elucidate the role of threonine T38 in CAR regulation, we found that the T38D mutant was inactive even in the presence of CAR activators. However, the T38A mutant was activated by CAR inducers, showing that T38 is not essential for CAR activation. Also, using the inhibitor erlotinib, we could not confirm a role for the epidermal growth factor receptor in CAR regulation. Our data suggest that CAR is constitutively bound to gene regulatory regions and is regulated by exogenous agents through a mechanism which involves protein phosphorylation in the nucleus
    • …
    corecore