7,374 research outputs found
DRASIC: Distributed Recurrent Autoencoder for Scalable Image Compression
We propose a new architecture for distributed image compression from a group
of distributed data sources. The work is motivated by practical needs of
data-driven codec design, low power consumption, robustness, and data privacy.
The proposed architecture, which we refer to as Distributed Recurrent
Autoencoder for Scalable Image Compression (DRASIC), is able to train
distributed encoders and one joint decoder on correlated data sources. Its
compression capability is much better than the method of training codecs
separately. Meanwhile, the performance of our distributed system with 10
distributed sources is only within 2 dB peak signal-to-noise ratio (PSNR) of
the performance of a single codec trained with all data sources. We experiment
distributed sources with different correlations and show how our data-driven
methodology well matches the Slepian-Wolf Theorem in Distributed Source Coding
(DSC). To the best of our knowledge, this is the first data-driven DSC
framework for general distributed code design with deep learning
- …