84 research outputs found

    Phosphatized Polar Lobe-Forming Embryos from the Precambrian of Southwest China

    Get PDF
    In developing embryos of some extant spiralian animals, polar lobe formation is one of the symmetry-breaking mechanisms for segregation of maternal cytoplasmic substances to certain blastomeres and not others. Polar lobe formation leads to unique early cleavage morphologies that include trilobed, J-shaped, and five-lobed structures. Fossil embryos similar to modern lobeforming embryos are recognized from the Precambrian Doushantuo Formation phosphates, Weng'an, Guizhou Province, China. These embryos are abundant and form a developmental sequence comparable to different developing stages observed in lobe-forming embryos of extant spiralians. These data imply that lobe formation is an evolutionarily ancient process of embryonic specification

    SirT1—A Sensor for Monitoring Self-Renewal and Aging Process in Retinal Stem Cells

    Get PDF
    Retinal stem cells bear potency of proliferation, self-renewal, and differentiation into many retinal cells. Utilizing appropriate sensors one can effectively detect the self-renewal and aging process abilities. Silencing information regulator (SirT1), a member of the sirtuin family, is a NAD-dependent histone deacetylase and an essential mediator for longevity in normal cells by calorie restriction. We firstly investigate the SirT1 mRNA expression in retinal stem cells from rats and 19 human eyes of different ages. Results revealed that SirT1 expression was significantly decreased in in vivo aged eyes, associated with poor self-renewal abilities. Additionally, SirT1 mRNA levels were dose-dependently increased in resveratrol- treated retinal stem cells. The expression of SirT1 on oxidative stress-induced damage was significantly decreased, negatively correlated with the level of intracellular reactive oxygen species production. Treatment with resveratrol could effectively further reduce oxidative stress induced by H2O2 treatment in retinal stem cells. Importantly, the anti-oxidant effects of resveratrol in H2O2-treated retinal stem cells were significantly abolished by knockdown of SirT1 expression (sh-SirT1). SirT1 expression provides a feasible sensor in assessing self-renewal and aging process in retinal stem cells. Resveratrol can prevent reactive oxygen species-induced damages via increased retinal SirT1 expression

    Impacts of Coulomb Interactions on the Magnetic Responses of Excitonic Complexes in Single Semiconductor Nanostructures

    Get PDF
    We report on the diamagnetic responses of different exciton complexes in single InAs/GaAs self-assembled quantum dots (QDs) and quantum rings (QRs). For QDs, the imbalanced magnetic responses of inter-particle Coulomb interactions play a crucial role in the diamagnetic shifts of excitons (X), biexcitons (XX), and positive trions (X−). For negative trions (X−) in QDs, anomalous magnetic responses are observed, which cannot be described by the conventional quadratic energy shift with the magnetic field. The anomalous behavior is attributed to the apparent change in the electron wave function extent after photon emission due to the strong Coulomb attraction by the hole in its initial state. In QRs, the diamagnetic responses of X and XX also show different behaviors. Unlike QDs, the diamagnetic shift of XX in QRs is considerably larger than that of X. The inherent structural asymmetry combined with the inter-particle Coulomb interactions makes the wave function distribution of XX very different from that of X in QRs. Our results suggest that the phase coherence of XX in QRs may survive from the wave function localization due to the structural asymmetry or imperfections

    Multidisciplinary Taiwan consensus for the use of conventional TACE in hepatocellular carcinoma treatment

    Get PDF
    Developed in early 1980s, transarterial chemoembolization (TACE) with Lipiodol was adopted globally after large-scale randomized control trials and meta-analyses proving its effectiveness were completed. Also known as “conventional TACE” (cTACE), TACE is currently the first-line treatment for patients with unresectable intermediate stage hepatocellular carcinoma (HCC) and delivers both ischemic and cytotoxic effects to targeted tumors. Although new technology and clinical studies have contributed to a more comprehensive understanding of when and how to apply this widely-adopted therapeutic modality, some of these new findings and techniques have yet to be incorporated into a guideline appropriate for Taiwan. In addition, differences in the underlying liver pathologies and treatment practices for transcatheter embolization between Taiwan and other Asian or Western populations have not been adequately addressed, with significant variations in the cTACE protocols adopted in different parts of the world. These mainly revolve around the amount and type of chemotherapeutic agents used, the type of embolic materials, reliance on Lipiodol, and the degree of selectiveness in catheter positioning. Subsequently, interpreting and comparing results obtained from different centers in a systematic fashion remain difficult, even for experienced practitioners. To address these concerns, we convened a panel of experts specializing in different aspects of HCC treatment to devise modernized recommendations that reflect recent clinical experiences, as well as cTACE protocols which are tailored for use in Taiwan. The conclusions of this expert panel are described herein

    Genome-Wide Association Study of Treatment Refractory Schizophrenia in Han Chinese

    Get PDF
    We report the first genome-wide association study of a joint analysis using 795 Han Chinese individuals with treatment-refractory schizophrenia (TRS) and 806 controls. Three loci showed suggestive significant association with TRS were identified. These loci include: rs10218843 (P = 3.04×10−7) and rs11265461 (P = 1.94×10−7) are adjacent to signaling lymphocytic activation molecule family member 1 (SLAMF1); rs4699030 (P = 1.94×10−6) and rs230529 (P = 1.74×10−7) are located in the gene nuclear factor of kappa light polypeptide gene enhancer in B-cells 1 (NFKB1); and rs13049286 (P = 3.05×10−5) and rs3827219 (P = 1.66×10−5) fall in receptor-interacting serine/threonine-protein kinase 4 (RIPK4). One isolated single nucleotide polymorphism (SNP), rs739617 (P = 3.87×10−5) was also identified to be associated with TRS. The -94delATTG allele (rs28362691) located in the promoter region of NFKB1 was identified by resequencing and was found to associate with TRS (P = 4.85×10−6). The promoter assay demonstrated that the -94delATTG allele had a significant lower promoter activity than the -94insATTG allele in the SH-SY5Y cells. This study suggests that rs28362691 in NFKB1 might be involved in the development of TRS

    Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes

    Get PDF
    Genome-wide association (GWA) studies have identified multiple new genomic loci at which common variants modestly but reproducibly influence risk of type 2 diabetes (T2D)1-11. Established associations to common and rare variants explain only a small proportion of the heritability of T2D. As previously published analyses had limited power to discover loci at which common alleles have modest effects, we performed meta-analysis of three T2D GWA scans encompassing 10,128 individuals of European-descent and ~2.2 million SNPs (directly genotyped and imputed). Replication testing was performed in an independent sample with an effective sample size of up to 53,975. At least six new loci with robust evidence for association were detected, including the JAZF1 (p=5.0×10−14), CDC123/CAMK1D (p=1.2×10−10), TSPAN8/LGR5 (p=1.1×10−9), THADA (p=1.1×10−9), ADAMTS9 (p=1.2×10−8), and NOTCH2 (p=4.1×10−8) gene regions. The large number of loci with relatively small effects indicates the value of large discovery and follow-up samples in identifying additional clues about the inherited basis of T2D

    A genome-wide association study of type 2 diabetes in finns detects multiple susceptibility variants

    Get PDF
    Identifying the genetic variants that increase the risk of type 2 diabetes (T2D) in humans has been a formidable challenge. Adopting a genome-wide association strategy, we genotyped 1161 Finnish T2D cases and 1174 Finnish normal glucose-tolerant (NGT) controls with >315,000 single-nucleotide polymorphisms (SNPs) and imputed genotypes for an additional >2 million autosomal SNPs. We carried out association analysis with these SNPs to identify genetic variants that predispose to T2D, compared our T2D association results with the results of two similar studies, and genotyped 80 SNPs in an additional 1215 Finnish T2D cases and 1258 Finnish NGT controls. We identify T2D-associated variants in an intergenic region of chromosome 11p12, contribute to the identification of T2D-associated variants near the genes IGF2BP2 and CDKAL1 and the region of CDKN2A and CDKN2B, and confirm that variants near TCF7L2, SLC30A8, HHEX, FTO, PPARG, and KCNJ11 are associated with T2D risk. This brings the number of T2D loci now confidently identified to at least 10

    Transport and Electro-Optical Properties in Polymeric Self-Assembled Systems

    Full text link
    corecore