35 research outputs found

    Low frequency high resolution optical inertial sensors

    Full text link
    Nowadays, sensors’ resolution limits their performance at low frequency which reduces their operating range. Sensors with a good resolution at low frequency are required to improve the performance of gravitational wave detectors in the sub-Hz frequency range. We are currently developing an inertial sensor with a sufficient resolution at low frequency from 10 mHz to 100 Hz. We are focusing on the improvement of different characteristics of the sensor, among others, its compactness and its thermal noise mitigation. The readout consists of a long-range Michelson interferometer fed by a 1550 nm laser and whose signal is measured by InGaS photodetectors. The use of InGaS photodetector in our interferometer will allow better resolution for future sensor projects. The inertial mass is connected to the frame by a fused silica flexure joint to limit internal damping. Then, translational guidance is implemented to allow the use of a flat mirror. The actual sensor developed at the Precision Mechatronics Laboratory has a resolution of 2x10^(-13) m/√Hz at 1 Hz. Our goal is to reach the same resolution with a compact version: 10x10x10 cm^3

    High resolution compact vertical inertial sensor for atomic quantum gravimeter hybridization

    Full text link
    peer reviewedInertial sensors are devices capable of measuring the absolute motion of the support they are fixed onto. The advance of very high-end scientific instruments such as gravitational wave detectors, always pursuing ever greater sensitivities and performance, puts a large demand on ultra-high-resolution inertial sensors, capable of measuring very low-frequency and small-amplitude motions. Our group has a long experience in the design of low-frequency inertial sensors intended to be used in active isolation systems. The latest horizontal and vertical interferometric inertial sensors that have been designed have performance that competes with industry standards. They were shown to reach a resolution of 2×10−13 m/Hz−−−√ at 1 Hz and are capable of measuring ground motion from 0.1 to 100 Hz. However, they are large and heavy, measuring approximately 20 × 20 × 30 cm3 each, which makes their integration into practical systems tedious. In addition, experimental characterization of these sensors revealed three main limitations to their resolution. They are: (i) thermal noise, (ii) electronic readout noise and (iii) broadband white noise caused by mechanical and optical nonlinearities. The present paper presents a revised version of the vertical sensor, where the size of the device has been made to fit a 10 × 10 × 10 cm3 while simultaneously addressing the aforementioned sources of noise. The mechanics of the compact sensor is made of a leaf-spring supported pendulum, connected to the frame using a flexure hinge. A moving mirror is connected to the mass and guided using a so-called "4-bar" mechanism, providing the moving mirror with linear translation motion (iii). The joints of the mechanics are made of fused silica, allowing to reach a low natural frequency of ≈1 Hz with a compact design, in addition to significantly reducing structural thermal noise (i) due to the low dissipation rate of fused-silica. On the other hand, the readout system used in this sensor is a homemade design of a Michelson interferometer. The optical scheme features numerous polarizing elements that allow the propagation of two laser beams in phase quadrature, and custom hardware is developed for minimizing electronic noise (ii). Lastly, the vertical sensor is operating in closed-loop, using a homemade actuator design, so as to reduce non-linear effects related to either the mechanics or the optical readout (iii). The sensor frequency response is characterized using a test bench that has been specifically developed for testing low-frequency sensor response. The noise floor is extracted using a Huddle Test

    Development of High Resolution Interferometric Inertial Sensors

    No full text
    The gravitational wave observatory and many other large ground-based instruments need to be decoupled from the Earth’s ever-present motion to improve their performance. In such scenarios, inertial sensors which measure the ground motion are necessary, especially those with a high resolution and a large dynamic range. This thesis aims to develop high performance inertial sensors which outperform the commercially available ones in terms of resolution and dynamic range in low frequency down to 0.01 Hz.Inertial sensors essentially consist of two parts: a single-degree-of-freedom mechanism and a transducer which converts mechanical quantities into electrical quantities. In this work, a novel interferometric readout based on homodyne quadrature interferometer is proposed and examined. Experimental results show that its resolution is 1e-11, 1e-12 and 2e-13 m/rtHz at 0.01, 0.1 and 1 Hz respectively. For the mechanical parts, the leaf spring pendulum and Lehman pendulum are used respectively as the restoring springs for the vertical and horizontal inertial sensors. With these, the resonance frequencies are made to 0.26 and 0.11 Hz, respectively. Combined with the interferometric readout, a Vertical Interferometric Inertial Sensor (VINS) and a Horizontal Interferometric Inertial Sensor (HINS) are developed. They are placed together in a vacuum chamber as an inertial unit to measure vertical and horizontal motion.A critical investigation of the developed HINS and VINS is performed. The passive VINS and HINS are compared, firstly, with a commercial seismometer (Guralp 6T) the results showed that they provide equivalent seismograms in frequencies from tides to 10 Hz. Secondly, both simulations and measurements have been conducted in this study, a noise budget of the interferometric readout itself was constructed, which corresponds to the case when the proof-mass of the inertial sensors is blocked. At present, the resolution of the interferometric readout is found to be limited by the photodetector noise from 0.01 to 1 Hz. Moreover, huddle tests were conducted for the inertial units to examine their overall performance. However, extra experiments and simulations are performed and it is found that the resolution identified from the experimental means is worse than that from the simulation. Nevertheless, the mismatch can be reduced by reducing the magnitude of input ground vibration, by reducing undesired inputs and improving the stability of the interferometric readout output signal.Doctorat en Sciences de l'ingénieur et technologieinfo:eu-repo/semantics/nonPublishe

    Towards Broadband Seismic Isolation Systems: a one d.o.f. isolation stage study

    No full text
    info:eu-repo/semantics/nonPublishe

    Development of a high resolution optical inertial sensor

    No full text
    info:eu-repo/semantics/nonPublishe

    Development of an Optical Inertial Sensor

    No full text
    info:eu-repo/semantics/nonPublishe
    corecore