4 research outputs found

    Ab initio molecular dynamics using density based energy functionals: application to ground state geometries of some small clusters

    Get PDF
    The ground state geometries of some small clusters have been obtained via ab initio molecular dynamical simulations by employing density based energy functionals. The approximate kinetic energy functionals that have been employed are the standard Thomas-Fermi (TTF)(T_{TF}) along with the Weizsacker correction TWT_W and a combination F(Ne)TTF+TWF(N_e)T_{TF} + T_W. It is shown that the functional involving F(Ne)F(N_e) gives superior charge densities and bondlengths over the standard functional. Apart from dimers and trimers of Na, Mg, Al, Li, Si, equilibrium geometries for LinAl,n=1,8Li_nAl, n=1,8 and Al13Al_{13} clusters have also been reported. For all the clusters investigated, the method yields the ground state geometries with the correct symmetries with bondlengths within 5\% when compared with the corresponding results obtained via full orbital based Kohn-Sham method. The method is fast and a promising one to study the ground state geometries of large clusters.Comment: 15 pages, 3 PS figure

    Ab initio molecular dynamics via density based energy functionals

    Get PDF
    The use of energy functionals based on density as the basic variable is advocated for ab initio molecular dynamics. It is demonstrated that the constraint of positivity of density can be incorporated easily by using square root density for minimization of the energy functional. An ad hoc prescription for including nonlocal pseudopotentials for plane wave based calculations is proposed and is shown to yield improved results. Applications are reported for equilibrium geometries of small finite systems, viz. dimers and trimers of simple metal atoms like Na and Mg, which represent a rather stringent test for approximate kinetic energy functionals involved in such calculations. PACS Numbers: 71.10, 31.20G, 02.70N, 36.40 1 I
    corecore