19 research outputs found

    Unsupervised Graph Spectral Feature Denoising for Crop Yield Prediction

    Full text link
    Prediction of annual crop yields at a county granularity is important for national food production and price stability. In this paper, towards the goal of better crop yield prediction, leveraging recent graph signal processing (GSP) tools to exploit spatial correlation among neighboring counties, we denoise relevant features via graph spectral filtering that are inputs to a deep learning prediction model. Specifically, we first construct a combinatorial graph with edge weights that encode county-to-county similarities in soil and location features via metric learning. We then denoise features via a maximum a posteriori (MAP) formulation with a graph Laplacian regularizer (GLR). We focus on the challenge to estimate the crucial weight parameter μ\mu, trading off the fidelity term and GLR, that is a function of noise variance in an unsupervised manner. We first estimate noise variance directly from noise-corrupted graph signals using a graph clique detection (GCD) procedure that discovers locally constant regions. We then compute an optimal μ\mu minimizing an approximate mean square error function via bias-variance analysis. Experimental results from collected USDA data show that using denoised features as input, performance of a crop yield prediction model can be improved noticeably

    Model-Free Prediction of Adversarial Drop Points in 3D Point Clouds

    Full text link
    Adversarial attacks pose serious challenges for deep neural network (DNN)-based analysis of various input signals. In the case of 3D point clouds, methods have been developed to identify points that play a key role in the network decision, and these become crucial in generating existing adversarial attacks. For example, a saliency map approach is a popular method for identifying adversarial drop points, whose removal would significantly impact the network decision. Generally, methods for identifying adversarial points rely on the deep model itself in order to determine which points are critically important for the model's decision. This paper aims to provide a novel viewpoint on this problem, in which adversarial points can be predicted independently of the model. To this end, we define 14 point cloud features and use multiple linear regression to examine whether these features can be used for model-free adversarial point prediction, and which combination of features is best suited for this purpose. Experiments show that a suitable combination of features is able to predict adversarial points of three different networks -- PointNet, PointNet++, and DGCNN -- significantly better than a random guess. The results also provide further insight into DNNs for point cloud analysis, by showing which features play key roles in their decision-making process.Comment: 10 pages, 6 figure

    Residential Power Forecasting Based on Affinity Aggregation Spectral Clustering

    Get PDF
    Power utility companies rely on forecasting to anticipate future consumption needs, plan power production, and schedule the selling/purchasing of power. We present a novel method to forecast the power consumption of a single house based on non-intrusive load monitoring (NILM) and affinity aggregation spectral clustering, with the idea of extending it to forecasting consumption in a larger set of houses like a microgrid. First, we use a graph to model statistical relationships between appliances. Specifically, the ON/OFF time-of-day and state duration probabilities are used to compute graph edge weights and establish statistical relationships among appliances. Then, leveraging on our previous work on NILM, we disaggregate the smart meter aggregate power profile into individual appliance power profiles. With the disaggregated individual power profiles and the corresponding ON/OFF time-of-day and state duration probabilities, we next propose a method to forecast each appliance’s power profiles using affinity aggregation spectral clustering. For the proposed method, we incorporate human behaviour and environmental influence in terms of calendar and seasonal contexts in order to enhance the forecasting performance. Finally, the results of appliance-level forecasting are aggregated to perform house-level forecasting. To test our proposed forecasting method, we use four publicly available datasets and compare our method against several existing approaches such as autoregressive integrated moving average, similar profile load forecast, artificial neural network, and recent NILM-based forecasting. Experimentally, we examine how well the proposed forecasting method can generalize appliance behaviours from one house to another. Results clearly show that our method is more accurate than existing approaches

    Non-intrusive load monitoring under residential solar power influx

    Get PDF
    This paper proposes a novel Non-Intrusive Load Monitoring (NILM) method for a consumer premises with a residentially installed solar plant. This method simultaneously identifies the amount of solar power influx as well as the turned ON appliances, their operating modes, and power consumption levels. Further, it works effectively with a single active power measurement taken at the total power entry point with a sampling rate of 1 Hz. First, a unique set of appliance and solar signatures were constructed using a high-resolution implementation of Karhunen Loéve expansion (KLE). Then, different operating modes of multi-state appliances were automatically classified utilizing a spectral clustering based method. Finally, using the total power demand profile, through a subspace component power level matching algorithm, the turned ON appliances along with their operating modes and power levels as well as the solar influx amount were found at each time point. The proposed NILM method was first successfully validated on six synthetically generated houses (with solar units) using real household data taken from the Reference Energy Disaggregation Dataset (REDD) - USA. Then, in order to demonstrate the scalability of the proposed NILM method, it was employed on a set of 400 individual households. From that, reliable estimations were obtained for the total residential solar generation and for the total load that can be shed to provide reserve services. Finally, through a developed prediction technique, NILM results observed from 400 households during four days in the recent past were utilized to predict the next day’s total load that can be shed

    Non-intrusive load monitoring based on low frequency active power measurements

    Get PDF
    A Non-Intrusive Load Monitoring (NILM) method for residential appliances based on ac- tive power signal is presented. This method works e ectively with a single active power measurement taken at a low sampling rate (1 s). The proposed method utilizes the Karhunen Lo ́ eve (KL) expan- sion to decompose windows of active power signals into subspace components in order to construct a unique set of features, referred to as signatures, from individual and aggregated active power signals. Similar signal windows were clustered in to one group prior to feature extraction. The clustering was performed using a modified mean shift algorithm. After the feature extraction, energy levels of signal windows and power levels of subspace components were utilized to reduce the number of possible ap- pliance combinations and their energy level combinations. Then, the turned on appliance combination and the energy contribution from individual appliances were determined through the Maximum a Pos- teriori (MAP) estimation. Finally, the proposed method was modified to adaptively accommodate the usage patterns of appliances at each residence. The proposed NILM method was validated using data from two public databases: tracebase and reference energy disaggregation data set (REDD). The pre- sented results demonstrate the ability of the proposed method to accurately identify and disaggregate individual energy contributions of turned on appliance combinations in real households. Furthermore, the results emphasise the importance of clustering and the integration of the usage behaviour pattern in the proposed NILM method for real household
    corecore