127 research outputs found

    BMP-7 attenuates diabetic cardiomyopathy : [abstract]

    Get PDF

    Overexpression of TIMP-1 in Embryonic Stem Cells Attenuates Adverse Cardiac Remodeling Following Myocardial Infarction

    Get PDF
    Transplanted embryonic stem (ES) cells, following myocardial infarction (MI), contribute to limited cardiac repair and regeneration with improved function. Therefore. novel strategies are still needed to understand the effects of genetically modified transplanted stem cells on cardiac remodeling. The present study evaluates whether transplanted mouse ES cells overexpressing TIMP-1, an antiapoptotic and antifibrotic protein. can enhance cardiac myocyte differentiation, inhibit native cardiac myocyte apoptosis, reduce fibrosis, and improve cardiac function in the infarcted myocardium. MI was produced in C57BL/6 mice by coronary artery ligation. TIMP-1-ES cells, ES cells, or culture medium (control) were transplanted into the peri-infarct region of the heart. Immunofluorescence, TUNEL staining, caspase-3 activity. ELISAs, histology, and echocardiography were used to identify newly differentiated cardiac myocytes and assess apoptosis, fibrosis, and heart function. Two weeks post-MI, significantly (p \u3c 0.05) enhanced engraftment and cardiac myocyte differentiation was observed in TIMP-1-ES cell-transplanted hearts compared with hearts transplanted with ES cells and control. Hearts transplanted with TIMP-1-ES cells demonstrated a reduction in apoptosis as well as an increase (p \u3c 0.05) in p-Akt activity compared with ES cells or culture media controls. Infarct size and interstitial and vascular fibrosis were significantly (p \u3c 0.05) decreased in the TIMP-1-ES cell group compared to controls. Furthermore. MMP-9. a key profibrotic protein, was significantly (p \u3c 0.01) reduced following TIMP-1-ES cell transplantation. Echocardiography data showed fractional shortening and ejection fraction were significantly (p \u3c 0.05) improved in the TIMP-1-ES cell group compared with respective controls. Our data suggest that transplanted ES cells overexpressing TIMP-1 attenuate adverse myocardial remodeling and improve cardiac function compared with ES cells that may have therapeutic potential in regenerative medicine

    Notch-1 Mediated Cardiac Protection following Embryonic and Induced Pluripotent Stem Cell Transplantation in Doxorubicin-Induced Heart Failure

    Get PDF
    Doxorubicin (DOX), an effective chemotherapeutic drug used in the treatment of various cancers, is limited in its clinical applications due to cardiotoxicity. Recent studies suggest that transplanted adult stem cells inhibit DOX-induced cardiotoxicity. However, the effects of transplanted embryonic stem (ES) and induced pluripotent stem (iPS) cells are completely unknown in DOX-induced left ventricular dysfunction following myocardial infarction (MI). In brief, C57BL/6 mice were divided into five groups: Sham, DOX-MI, DOX-MI+ cell culture (CC) media, DOX-MI+ ES cells, and DOX-MI+ iPS cells. Mice were injected with cumulative dose of 12 mg/kg of DOX and 2 weeks later, MI was induced by coronary artery ligation. Following ligation, 5x10(4) ES or iPS cells were delivered into the peri-infarct region. At day 14 post-MI, echocardiography was performed, mice were sacrificed, and hearts were harvested for further analyses. Our data reveal apoptosis was significantly inhibited in ES and iPS cell transplanted hearts compared with respective controls (DOX-MI+ES: 0.48 +/- 0.06% and DOX-MI+iPS: 0.33 +/- 0.05% vs. DOX-MI: 1.04 +/- 0.07% and DOX-MI+CC: 0.96 +/- 0.21%; p \u3c 0.05). Furthermore, a significant increase in levels of Notch-1 (p \u3c 0.05), Hes1 (p \u3c 0.05), and pAkt (p \u3c 0.05) were observed whereas a decrease in the levels of PTEN (p \u3c 0.05), a negative regulator of Akt, was evident following stem cell transplantation. Moreover, hearts transplanted with stem cells demonstrated decreased vascular and interstitial fibrosis (p \u3c 0.05) as well as MMP-9 expression (p \u3c 0.01) compared with controls. Additionally, heart function was significantly improved (p \u3c 0.05) in both cell-transplanted groups. In conclusion, our data show that transplantation of ES and iPS cells blunt DOX-induced adverse cardiac remodeling, which is associated with improved cardiac function, and these effects are mediated by the Notch pathway

    Embryonic Stem Cells Improve Cardiac Function in Doxorubicin-Induced Cardiomyopathy Mediated Through Multiple Mechanisms

    Get PDF
    Doxorubicin (DOX) is an effective anti neoplastic agent used for the treatment of a variety of cancers. Unfortunately, its use is limited as this drug induces cardiotoxicity and heart failure as a side effect. There is no report that describes whether transplanted embryonic stem (ES) cells or their conditioned medium (CM) in DOX-induced cardiomyopathy (DIC) can repair and regenerate myocardium. Therefore, we transplanted ES cells or CM in DIC to examine apoptosis. fibrosis, cytoplasmic vacuolization, and myofibrillar loss and their associated Akt and ERK pathway. Moreover, we also determined activation of endogenous c-kit(+ve) cardiac stem cells (CSCs), levels of FIGF and IGF-1, growth factors required for c-kit cell activation, and their differentiation into cardiac myocytes, which also contributes in cardiac regeneration and improved heart function. We generated DIC in C57Bl/6 mice (cumulative dose of DOX 12 mg/kg body weight. IP), and animals were treated with ES cells, CM, or cell culture medium in controls. Two weeks post-DIC, ES cells or CM transplanted hearts showed a significant (p \u3c 0.05) decrease in cardiac apoptotic nuclei and their regulation with Akt and ERK pathway. Cardiac fibrosis observed in the ES cell or CM groups was significantly less compared with DOX and cell culture medium groups (p \u3c 0.05). Next, cytoplasmic vacuolization and myofibrillar loss was reduced (p \u3c 0.05) following treatment with ES cells or CM. Moreover, our data also demonstrated increased levels of c-kit(+ve) CSCs in ES cells or CM hearts and differentiated cardiac myocytes from these CSCs, suggesting endogenous cardiac regeneration. Importantly, the levels of HFG and IGF-1 were significantly increased in ES cells or CM transplanted hearts. In conclusion, we reported that transplanted ES cells or CM in DIC hearts significantly decreases various adverse pathological mechanisms as well as enhances cardiac regeneration that effectively contributes to improved heart function

    Fibroblast Growth Factor-9 Enhances M2 Macrophage Differentiation and Attenuates Adverse Cardiac Remodeling in the Infarcted Diabetic Heart

    Get PDF
    Inflammation has been implicated as a perpetrator of diabetes and its associated complications. Monocytes, key mediators of inflammation, differentiate into pro-inflammatory M1 macrophages and anti-inflammatory M2 macrophages upon infiltration of damaged tissue. However, the inflammatory cell types, which propagate diabetes progression and consequential adverse disorders, remain unclear. The current study was undertaken to assess monocyte infiltration and the role of fibroblast growth factor-9 (FGF-9) on monocyte to macrophage differentiation and cardioprotection in the diabetic infarcted heart. Db/db diabetic mice were assigned to sham, myocardial infarction (MI), and MI+FGF-9 groups. MI was induced by permanent coronary artery ligation and animals were subjected to 2D transthoracic echocardiography two weeks post-surgery. Immunohistochemical and immunoassay results from heart samples collected suggest significantly increased infiltration of monocytes (Mean +/- SEM; MI: 2.02% +/- 0.23% vs. Sham 0.75% +/- 0.07%; p \u3c 0.05) and associated pro-inflammatory cytokines (TNF-alpha, MCP-1, and IL-6), adverse cardiac remodeling (Mean +/- SEM; MI: 33% +/- 3.04% vs. Sham 2.2% +/- 0.33%; p \u3c 0.05), and left ventricular dysfunction (Mean +/- SEM; MI: 35.4% +/- 1.25% vs. Sham 49.19% +/- 1.07%; p \u3c 0.05) in the MI group. Importantly, treatment of diabetic infarcted myocardium with FGF-9 resulted in significantly decreased monocyte infiltration (Mean +/- SEM; MI+FGF-9: 1.39% +/- 0.1% vs. MI: 2.02% +/- 0.23%; p \u3c 0.05), increased M2 macrophage differentiation (Mean +/- SEM; MI+FGF-9: 4.82% +/- 0.86% vs. MI: 0.85% +/- 0.3%; p \u3c 0.05) and associated anti-inflammatory cytokines (IL-10 and IL-1RA), reduced adverse remodeling (Mean +/- SEM; MI+FGF-9: 11.59% +/- 1.2% vs. MI: 33% +/- 3.04%; p \u3c 0.05), and improved cardiac function (Fractional shortening, Mean +/- SEM; MI+FGF-9: 41.51% +/- 1.68% vs. MI: 35.4% +/- 1.25%; p \u3c 0.05). In conclusion, our data suggest FGF-9 possesses novel therapeutic potential in its ability to mediate monocyte to M2 differentiation and confer cardiac protection in the post-MI diabetic heart

    SMAD-PI3K-Akt-mTOR Pathway Mediates BMP-7 Polarization of Monocytes into M2 Macrophages

    Get PDF
    Previously we demonstrated that bone morphogenetic protein-7 (BMP-7) treatment polarizes monocytes into M2 macrophages and increases the expression of anti-inflammatory cytokines. Despite these findings, the mechanisms for the observed BMP-7 induced monocyte polarization into M2 macrophages are completely unknown. In this study, we demonstrate the mechanisms involved in the polarization of monocytes into M2 macrophages. Apoptotic conditioned media (ACM) was generated to mimic the stressed conditions, inducing monocyte polarization. Monocytes were treated with ACM along with BMP-7 and/or its inhibitor, follistatin, for 48 hours. Furthermore, an inhibitor of the PI3K pathway, LY-294002, was also studied. Our data show that BMP-7 induces polarization of monocytes into M2 macrophages while significantly increasing the expression of anti-inflammatory markers, arginase-1 and IL-10, and significantly (p \u3c 0.05) decreasing the expression of pro-inflammatory markers iNOS, IL-6, TNF-alpha and MCP-1; (p \u3c 0.05). Moreover, addition of the PI3K inhibitor, LY-294002, significantly (p \u3c 0.05) decreases upregulation of IL-10 and arginase-1, suggesting involvement of the PI3K pathway in M2 macrophage polarization. Next, following BMP-7 treatment, a significant (p \u3c 0.05) increase in p-SMAD1/5/8 and p-PI3K expression resulting in downstream activation of p-Akt and p-mTOR was observed. Furthermore, expression of p-PTEN, an inhibitor of the PI3K pathway, was significantly (p \u3c 0.05) increased in the ACM group. However, BMP-7 treatment inhibited its expression, suggesting involvement of the PI3K-Akt-mTOR pathway. In conclusion, we demonstrate that BMP-7 polarizes monocytes into M2 macrophages and enhances anti-inflammatory cytokine expression which is mediated by the activated SMAD-PI3K-Akt-mTOR pathway

    Regulation of PTEN/Akt Pathway Enhances Cardiomyogenesis and Attenuates Adverse Left Ventricular Remodeling following Thymosin beta 4 Overexpressing Embryonic Stem Cell Transplantation in the Infarcted Heart

    Get PDF
    Thymosin beta 4 (T beta 4), a small G-actin sequestering peptide, mediates cell proliferation, migration, and angiogenesis. Whether embryonic stem (ES) cells, overexpressing T beta 4, readily differentiate into cardiac myocytes in vitro and in vivo and enhance cardioprotection following transplantation post myocardial infarction (MI) remains unknown. Accordingly, we established stable mouse ES cell lines, RFP-ESCs and T beta 4-ESCs, expressing RFP and an RFP-T beta 4 fusion protein, respectively. In vitro, the number of spontaneously beating embryoid bodies (EBs) was significantly increased in T beta 4-ESCs at day 9, 12 and 15, compared with RFP-ESCs. Enhanced expression of cardiac transcriptional factors GATA-4, Mef2c and Txb6 in T beta 4-EBs, as confirmed with real time-PCR analysis, was accompanied by the increased number of EB areas stained positive for sarcomeric alpha-actin in T beta 4-EBs, compared with the RFP control, suggesting a significant increase in functional cardiac myocytes. Furthermore, we transplanted T beta 4-ESCs into the infarcted mouse heart and performed morphological and functional analysis 2 weeks after MI. There was a significant increase in newly formed cardiac myocytes associated with the Notch pathway, a decrease in apoptotic nuclei mediated by an increase in Akt and a decrease in levels of PTEN. Cardiac fibrosis was significantly reduced, and left ventricular function was significantly augmented in the T beta 4-ESC transplanted group, compared with controls. It is concluded that genetically modified T beta 4-ESCs, potentiates their ability to turn into cardiac myocytes in vitro as well as in vivo. Moreover, we also demonstrate that there was a significant decrease in both cardiac apoptosis and fibrosis, thus improving cardiac function in the infarcted heart

    Overcoming the Cardiac Toxicities of Cancer Therapy Immune Checkpoint Inhibitors

    Get PDF
    Immune checkpoint inhibitors (ICIs) have led recent advances in the field of cancer immunotherapy improving overall survival in multiple malignancies with abysmal prognoses prior to their introduction. The remarkable efficacy of ICIs is however limited by their potential for systemic and organ specific immune-related adverse events (irAEs), most of which present with mild to moderate symptoms that can resolve spontaneously, with discontinuation of therapy or glucocorticoid therapy. Cardiac irAEs however are potentially fatal. The understanding of autoimmune cardiotoxicity remains limited due to its rareness. In this paper, we provide an updated review of the literature on the pathologic mechanisms, diagnosis, and management of autoimmune cardiotoxicity resulting from ICIs and their combinations and provide perspective on potential strategies and ongoing research developments to prevent and mitigate their occurrence

    Akt-Mtor Pathway Inhibits Apoptosis And Fibrosis In Doxorubicin-Induced Cardiotoxicity Following Embryonic Stem Cell Transplantation

    No full text
    Doxorubicin (DOX) is an effective chemotherapeutic drug used for the treatment of a variety of malignancies. Unfortunately, time and dose-dependent DOX therapy induces cardiotoxicity and heart failure. We previously reported that transplanted embryonic stem (ES) cells and the conditioned medium (CM) can repair and regenerate injured myocardium in acute DOX-induced cardiomyopathy (DIC). However, the effectiveness of ES cell and CM therapeutics has not been challenged in the chronic DIC model. To this end, the long-term impact of ES cells and CM on apoptosis, fibrosis, cytoplasmic vacuolization, oxidative stress, and their associated mediators were examined. Four weeks post-DIC, ES cells and CM-transplanted hearts showed a significant decrease in cardiac apoptotic nuclei, which was consequent to modulation of signaling molecules in the Akt pathway including PTEN, Akt, and mTOR. Cytoplasmic vacuolization was reduced following treatment with ES cells and CM, as was cardiac fibrosis, which was attributable to downregulation of MMP-9 activity. Oxidative stress, as evidenced by DHE staining and lipid peroxide concentration, was significantly diminished, and preservation of the antioxidant defense system was observed following CM and ES cell transplantation. In conclusion, our data suggest that transplanted ES cells and CM have long-term potentiation to significantly mitigate various adverse pathological mechanisms present in the injured chronic DIC heart
    • …
    corecore