29 research outputs found
Classifying depression symptom severity: Assessment of speech representations in personalized and generalized machine learning models
There is an urgent need for new methods that improve the management and treatment of Major Depressive Disorder (MDD). Speech has long been regarded as a promising digital marker in this regard, with many works highlighting that speech changes associated with MDD can be captured through machine learning models. Typically, findings are based on cross-sectional data, with little work exploring the advantages of personalization in building more robust and reliable models. This work assesses the strengths of different combinations of speech representations and machine learning models, in personalized and generalized settings in a two-class depression severity classification paradigm. Key results on a longitudinal dataset highlight the benefits of personalization. Our strongest performing model set-up utilized self-supervised learning features and convolutional neural network (CNN) and long short-term memory (LSTM) back-end
Identifying depression-related topics in smartphone-collected free-response speech recordings using an automatic speech recognition system and a deep learning topic model
Language use has been shown to correlate with depression, but large-scale
validation is needed. Traditional methods like clinic studies are expensive.
So, natural language processing has been employed on social media to predict
depression, but limitations remain-lack of validated labels, biased user
samples, and no context. Our study identified 29 topics in 3919
smartphone-collected speech recordings from 265 participants using the Whisper
tool and BERTopic model. Six topics with a median PHQ-8 greater than or equal
to 10 were regarded as risk topics for depression: No Expectations, Sleep,
Mental Therapy, Haircut, Studying, and Coursework. To elucidate the topic
emergence and associations with depression, we compared behavioral (from
wearables) and linguistic characteristics across identified topics. The
correlation between topic shifts and changes in depression severity over time
was also investigated, indicating the importance of longitudinally monitoring
language use. We also tested the BERTopic model on a similar smaller dataset
(356 speech recordings from 57 participants), obtaining some consistent
results. In summary, our findings demonstrate specific speech topics may
indicate depression severity. The presented data-driven workflow provides a
practical approach to collecting and analyzing large-scale speech data from
real-world settings for digital health research
Multilingual markers of depression in remotely collected speech samples: A preliminary analysis
Background:
Speech contains neuromuscular, physiological and cognitive components, and so is a potential biomarker of mental disorders. Previous studies indicate that speaking rate and pausing are associated with major depressive disorder (MDD). However, results are inconclusive as many studies are small and underpowered and do not include clinical samples. These studies have also been unilingual and use speech collected in controlled settings. If speech markers are to help understand the onset and progress of MDD, we need to uncover markers that are robust to language and establish the strength of associations in real-world data.
//
Methods:
We collected speech data in 585 participants with a history of MDD in the United Kingdom, Spain, and Netherlands as part of the RADAR-MDD study. Participants recorded their speech via smartphones every two weeks for 18 months. Linear mixed models were used to estimate the strength of specific markers of depression from a set of 28 speech features.
//
Results:
Increased depressive symptoms were associated with speech rate, articulation rate and intensity of speech elicited from a scripted task. These features had consistently stronger effect sizes than pauses.
//
Limitations:
Our findings are derived at the cohort level so may have limited impact on identifying intra-individual speech changes associated with changes in symptom severity. The analysis of features averaged over the entire recording may have underestimated the importance of some features.
//
Conclusions:
Participants with more severe depressive symptoms spoke more slowly and quietly. Our findings are from a real-world, multilingual, clinical dataset so represent a step-change in the usefulness of speech as a digital phenotype of MDD
Long-term participant retention and engagement patterns in an app and wearable-based multinational remote digital depression study
Recent growth in digital technologies has enabled the recruitment and monitoring of large and diverse populations in remote health studies. However, the generalizability of inference drawn from remotely collected health data could be severely impacted by uneven participant engagement and attrition over the course of the study. We report findings on long-term participant retention and engagement patterns in a large multinational observational digital study for depression containing active (surveys) and passive sensor data collected via Android smartphones, and Fitbit devices from 614 participants for up to 2 years. Majority of participants (67.6%) continued to remain engaged in the study after 43 weeks. Unsupervised clustering of participants' study apps and Fitbit usage data showed 3 distinct engagement subgroups for each data stream. We found: (i) the least engaged group had the highest depression severity (4 PHQ8 points higher) across all data streams; (ii) the least engaged group (completed 4 bi-weekly surveys) took significantly longer to respond to survey notifications (3.8 h more) and were 5 years younger compared to the most engaged group (completed 20 bi-weekly surveys); and (iii) a considerable proportion (44.6%) of the participants who stopped completing surveys after 8 weeks continued to share passive Fitbit data for significantly longer (average 42 weeks). Additionally, multivariate survival models showed participants' age, ownership and brand of smartphones, and recruitment sites to be associated with retention in the study. Together these findings could inform the design of future digital health studies to enable equitable and balanced data collection from diverse populations
Characterising illness stages and recovery trajectories of eating disorders in young people via remote measurement technology (STORY):A multi-centre prospective cohort study protocol
Background: Eating disorders (EDs) are serious, often chronic, conditions associated with pronounced morbidity, mortality, and dysfunction increasingly affecting young people worldwide. Illness progression, stages and recovery trajectories of EDs are still poorly characterised. The STORY study dynamically and longitudinally assesses young people with different EDs (restricting; bingeing/bulimic presentations) and illness durations (earlier; later stages) compared to healthy controls. Remote measurement technology (RMT) with active and passive sensing is used to advance understanding of the heterogeneity of earlier and more progressed clinical presentations and predictors of recovery or relapse. Methods: STORY follows 720 young people aged 16–25 with EDs and 120 healthy controls for 12 months. Online self-report questionnaires regularly assess ED symptoms, psychiatric comorbidities, quality of life, and socioeconomic environment. Additional ongoing monitoring using multi-parametric RMT via smartphones and wearable smart rings (‘Ōura ring’) unobtrusively measures individuals’ daily behaviour and physiology (e.g., Bluetooth connections, sleep, autonomic arousal). A subgroup of participants completes additional in-person cognitive and neuroimaging assessments at study-baseline and after 12 months. Discussion: By leveraging these large-scale longitudinal data from participants across ED diagnoses and illness durations, the STORY study seeks to elucidate potential biopsychosocial predictors of outcome, their interplay with developmental and socioemotional changes, and barriers and facilitators of recovery. STORY holds the promise of providing actionable findings that can be translated into clinical practice by informing the development of both early intervention and personalised treatment that is tailored to illness stage and individual circumstances, ultimately disrupting the long-term burden of EDs on individuals and their families.</p