22 research outputs found

    Resveratrol Neuroprotection in a Chronic Mouse Model of Multiple Sclerosis

    Get PDF
    Resveratrol is a naturally occurring polyphenol that activates SIRT1, an NAD-dependent deacetylase. SRT501, a pharmaceutical formulation of resveratrol with enhanced systemic absorption, prevents neuronal loss without suppressing inflammation in mice with relapsing experimental autoimmune encephalomyelitis (EAE), a model of multiple sclerosis (MS). In contrast, resveratrol has been reported to suppress inflammation in chronic EAE, although neuroprotective effects were not evaluated. The current studies examine potential neuroprotective and immunomodulatory effects of resveratrol in chronic EAE induced by immunization with myelin oligodendroglial glycoprotein peptide in C57/Bl6 mice. Effects of two distinct formulations of resveratrol administered daily orally were compared. Resveratrol delayed the onset of EAE compared to vehicle-treated EAE mice, but did not prevent or alter the phenotype of inflammation in spinal cords or optic nerves. Significant neuroprotective effects were observed, with higher numbers of retinal ganglion cells found in eyes of resveratrol-treated EAE mice with optic nerve inflammation. Results demonstrate that resveratrol prevents neuronal loss in this chronic demyelinating disease model, similar to its effects in relapsing EAE. Differences in immunosuppression compared with prior studies suggest that immunomodulatory effects may be limited and may depend on specific immunization parameters or timing of treatment. Importantly, neuroprotective effects can occur without immunosuppression, suggesting a potential additive benefit of resveratrol in combination with anti-inflammatory therapies for MS

    Intracranial Inoculation Is More Potent Than Intranasal Inoculation for Inducing Optic Neuritis in the Mouse Hepatitis Virus-Induced Model of Multiple Sclerosis

    Get PDF
    Neurotropic strains of mouse hepatitis virus (MHV) induce acute inflammation and chronic demyelination in the spinal cord and optic nerves mediated by axonal spread following intracranial inoculation in mice, with pathologic features similar to the human demyelinating disease multiple sclerosis. Spinal cord demyelination is also induced following intranasal inoculation with neurotropic MHV strains, however much higher viral doses are required as compared to intracranial inoculation. Recently, it was shown that intranasal administration of low concentrations of proteins leads to significant, rapid accumulation of protein in the optic nerve and in the eye, with only low levels reaching spinal cord and other brain regions. Thus, we examined whether intranasal inoculation with MHV at doses equivalent to those given intracranially could induce optic neuritis—inflammation, demyelination and loss of retinal ganglion cells (RGCs) in the optic nerve with or without inducing spinal cord demyelination. Four week old male C57BL/6J mice were inoculated intracranially with the recombinant demyelinating strain RSA59, or intranasally with RSA59 or the non-demyelinating strain RSMHV2 as control. One month post-inoculation, mice inoculated intracranially with RSA59 had significant myelin loss in both spinal cord and optic nerves, with significant loss of RGCs as well, consistent with prior studies. As expected, intranasal inoculation with RSA59 failed to induce demyelination in spinal cord; however, it also did not induce optic nerve demyelination. No acute inflammation was found, and no viral antigen was detected, in the optic nerve or retina 1 day after inoculation. Results confirm the neurotropic effects of RSA59 following intracranial inoculation, and suggest that direct infection with axonal transport of virus from brain to spinal cord and optic nerve is required to induce demyelinating disease. These studies suggest that MHV does not selectively concentrate in optic nerve and retina to sufficient levels to induce demyelination following intranasal inoculation. Intracranial inoculation should continue to be considered a preferred method for studies of MHV-induced optic neuritis and central nervous system (CNS) demyelinating disease

    ceRGC and Vision Loss From Traumatic Optic Neuropathy Indud by Repetitive Closed Head Trauma Is Dependent on Timing and Force of Impact.

    Get PDF
    Purpose: Traumatic optic neuropathy (TON) is often caused by blunt head trauma and has no currently effective treatment. Common animal models of TON induced by surgical crush injury are plagued by variability and do not mimic typical mechanisms of TON injury. Traumatic head impact models have recently shown evidence of TON, but the degree of head impact necessary to consistently induce TON is not well characterized, and it is examined here. Methods: Traumatic skull impacts to C57BL/6J mice were induced using an electromagnetic controlled impact device. One impact performed at two depths (mild and severe), as well as three and five repetitive impacts with an interconcussion interval of 48 hours, were tested. Optokinetic responses (OKRs) and retinal ganglion cell (RGC) loss were measured. Results: Five repetitive mild impacts significantly decreased OKR scores and RGC numbers compared with control mice 10 weeks after initial impact, with maximal pathology observed by 6 weeks and partial but significant loss present by 3 weeks. One severe impact induced similar TON. Three mild impacts also induced early OKR and RGC loss, but one mild impact did not. Equivalent degrees of TON were induced bilaterally, and a significant correlation was observed between OKR scores and RGC numbers. Conclusions: Repetitive, mild closed head trauma in mice induces progressive RGC and vision loss that worsens with increasing impacts. Translational Relevance: Results detail a reproducible model of TON that provides a reliable platform for studying potential treatments over a 3- to 6-week time course

    CD4 Deficiency Causes Poliomyelitis and Axonal Blebbing in Murine Coronavirus-Induced Neuroinflammation.

    Get PDF
    Mouse hepatitis virus (MHV) is a murine betacoronavirus (m-CoV) that causes a wide range of diseases in mice and rats, including hepatitis, enteritis, respiratory diseases, and encephalomyelitis in the central nervous system (CNS). MHV infection in mice provides an efficient cause-effect experimental model to understand the mechanisms of direct virus-induced neural-cell damage leading to demyelination and axonal loss, which are pathological features of multiple sclerosis (MS), the most common disabling neurological disease in young adults. Infiltration of T lymphocytes, activation of microglia, and their interplay are the primary pathophysiological events leading to disruption of the myelin sheath in MS. However, there is emerging evidence supporting gray matter involvement and degeneration in MS. The investigation of T cell function in the pathogenesis of deep gray matter damage is necessary. Here, we employed RSA59 (an isogenic recombinant strain of MHV-A59)-induced experimental neuroinflammation model to compare the disease in CD4-/- mice with that in CD4+/+ mice at days 5, 10, 15, and 30 postinfection (p.i.). Viral titer estimation, nucleocapsid gene amplification, and viral antinucleocapsid staining confirmed enhanced replication of the virions in the absence of functional CD4+ T cells in the brain. Histopathological analyses showed elevated susceptibility of CD4-/- mice to axonal degeneration in the CNS, with augmented progression of acute poliomyelitis and dorsal root ganglionic inflammation rarely observed in CD4+/+ mice. Depletion of CD4+ T cells showed unique pathological bulbar vacuolation in the brain parenchyma of infected mice with persistent CD11b+ microglia/macrophages in the inflamed regions on day 30 p.i. In summary, the current study suggests that CD4+ T cells are critical for controlling acute-stage poliomyelitis (gray matter inflammation), chronic axonal degeneration, and inflammatory demyelination due to loss of protective antiviral host immunity. IMPORTANCE The current trend in CNS disease biology is to attempt to understand the neural-cell-immune interaction to investigate the underlying mechanism of neuroinflammation, rather than focusing on peripheral immune activation. Most studies in MS are targeted toward understanding the involvement of CNS white matter. However, the importance of gray matter damage has become critical in understanding the long-term progressive neurological disorder. Our study highlights the importance of CD4+ T cells in safeguarding neurons against axonal blebbing and poliomyelitis from murine betacoronavirus-induced neuroinflammation. Current knowledge of the mechanisms that lead to gray matter damage in MS is limited, because the most widely used animal model, experimental autoimmune encephalomyelitis (EAE), does not present this aspect of the disease. Our results, therefore, add to the existing limited knowledge in the field. We also show that the microglia, though important for the initiation of neuroinflammation, cannot establish a protective host immune response without the help of CD4+ T cells

    Role of SIRT1 Activity and pAKT Signaling in ST266-Mediated RGC Neuroprotection (video)

    No full text
    Optic neuritis occurs during multiple sclerosis (MS) and induces retinal ganglion cell (RGC) loss. Thus, neuroprotective therapies are needed. We previously showed that intranasally delivered ST266, the biological secretome of Amnion-derived Multipotent Progenitor cells, attenuated loss of vision and RGCs in experimental optic neuritis, but mechanisms of its actions are not known. Potential mechanisms were examined in the experimental autoimmune encephalomyelitis (EAE) model of MS

    Role of SIRT1 Activity and pAKT Signaling in ST266-Mediated RGC Neuroprotection (abstract)

    No full text
    Optic neuritis occurs during multiple sclerosis (MS) and induces retinal ganglion cell (RGC) loss. Thus, neuroprotective therapies are needed. We previously showed that intranasally delivered ST266, the biological secretome of Amnion-derived Multipotent Progenitor cells, attenuated loss of vision and RGCs in experimental optic neuritis, but mechanisms of its actions are not known. Potential mechanisms were examined in the experimental autoimmune encephalomyelitis (EAE) model of MS

    Mitochondrial Uncoupler Prodrug of 2,4-Dinitrophenol, MP201, Prevents Neuronal Damage and Preserves Vision in Experimental Optic Neuritis

    No full text
    The ability of novel mitochondrial uncoupler prodrug of 2,4-dinitrophenol (DNP), MP201, to prevent neuronal damage and preserve visual function in an experimental autoimmune encephalomyelitis (EAE) model of optic neuritis was evaluated. Optic nerve inflammation, demyelination, and axonal loss are prominent features of optic neuritis, an inflammatory optic neuropathy often associated with the central nervous system demyelinating disease multiple sclerosis. Currently, optic neuritis is frequently treated with high-dose corticosteroids, but treatment fails to prevent permanent neuronal damage and associated vision changes that occur as optic neuritis resolves, thus suggesting that additional therapies are required. MP201 administered orally, once per day, attenuated visual dysfunction, preserved retinal ganglion cells (RGCs), and reduced RGC axonal loss and demyelination in the optic nerves of EAE mice, with limited effects on inflammation. The prominent mild mitochondrial uncoupling properties of MP201, with slow elimination of DNP, may contribute to the neuroprotective effect by modulating the entire mitochondria’s physiology directly. Results suggest that MP201 is a potential novel treatment for optic neuritis

    Effects of Varying Intranasal Treatment Regimens in ST266-Mediated Retinal Ganglion Cell Neuroprotection

    No full text
    Introduction: Previous studies have shown that intranasally administered ST266, a novel biological secretome of amnion-derived multipotent progenitor cells containing multiple growth factors and anti-inflammatory cytokines, attenuated visual dysfunction and prevented retinal ganglion cell (RGC) loss in experimental optic neuritis. Long-term effects and dose escalation studies examined here have not been reported previously. Methods: Optic neuritis was induced in the multiple sclerosis model experimental autoimmune encephalomyelitis (EAE). EAE and control mice were treated once or twice daily with intranasal placebo/vehicle or ST266 beginning after onset of optic neuritis for either 15 days or continuously until sacrifice. Visual function was assessed by optokinetic responses (OKRs). RGC survival and optic nerve inflammation and demyelination were measured. Results: Both once and twice daily continuous intranasal ST266 treatment from disease onset to 56 days after EAE induction significantly increased OKR scores, decreased RGC loss, and reduced optic nerve inflammation and demyelination compared with placebo (saline, nonspecific protein solution, or cell culture media)-treated EAE mice. ST266 treatment given for just 15 days after disease onset, then discontinued, only delayed OKR decreases, and had limited effects on RGC survival and optic nerve inflammation 56 days after disease induction. Conclusions: ST266 is a potential neuroprotective therapy to prevent RGC damage, and intranasal delivery warrants further study as a novel mechanism to deliver protein therapies for optic neuropathies. Results suggest that once daily ST266 treatment is sufficient to sustain maximal benefits and demonstrate that neuroprotective effects promoted by ST266 are specific to the combination of factors present in this complex biologic therapy

    Development of a Novel Gene Therapy Using SIRT1 Signaling for Neuro-protection in Optic Neuropathies

    No full text
    Pharmacologic activators and genetic overexperession of sirtuin 1 (SIRT1) promote neuroprotective effects in multiple neurodegenerative disease models, including optic neuropathies. AAV2-SIRT1 mediated overexpression in mouse retina partially attenuates experimental optic neuritis despite only a 21% transduction efficiency for retinal ganglion cells (RGCs) using the AAV2-GFP vector for quantification. Viral vectors with increased transduction efficiency are needed

    Amnion-derived Multipotent Progenitor Cells Attenuate Optic Nerve and Spinal Cord Demyelinating Disease

    No full text
    ST266 is the biological secretome of Amnion-derived Multipotent Progenitor (AMP) cells. ST266 proteins accumulate in eyes and optic nerves following intranasal delivery, resulting in selective suppression of optic neuritis in the experimental autoimmune encephalomyelitis (EAE) model of multiple sclerosis, without suppressing spinal cord lesions. We tested the hypothesis that systemic AMP cell administration could suppress both optic neuritis and myelitis in EAE
    corecore