8 research outputs found

    Desenvolvimento e avaliação agronômica de novos fertilizantes organominerais como fonte de potássio para a produção orgânica.

    Get PDF
    A utilização de fertilizantes com alta eficiência agronômica no sistema de produção orgânico é muito limitado. O desenvolvimento de novas tecnologias na área é muito importante, visto a necessidade que esse setor possui. Foram desenvolvidos novos fertilizantes organominerais para servir como fonte de K2O para esse sistema. Esses produtos foram avaliados quanto à aplicação e eficiência no suprimento de potássio, usando como cultura teste o Rabanete. A matéria orgânica presente no composto influenciou no acumulo de matéria seca. Os fertilizantes organominerais obtiveram melhores resultados no acúmulo de matéria seca e de potássio aos fertilizantes minerais

    Iodine biofortification of wheat, rice and maize through fertilizer strategy

    No full text
    Aim Iodine (I) deficiency is distinct from other micronutrient deficiencies in human populations in having a high endemic prevalence both in well-developed and in developing countries. The very low concentration of iodine in agricultural soils and cereal-based foods is widely believed to be the main reason of iodine deficiency in humans, especially in developing countries. In the present study, the possibility of using iodine containing fertilizers for agronomic biofortification of cereal grains with iodine was studied. The aim was to establish the best application method (to the soil or as foliar spray), the best form of iodine (potassium iodate or potassium iodide) and the optimal dose of iodine. Additionally, experiments were conducted to study transport of iodine in plants and localization of iodine within the grains. Materials and methods Experiments were conducted both under greenhouse conditions and in the field on wheat (Triticum aestivum) grown in Turkey and Pakistan, on rice (Oryza sativa) grown in Brazil, Thailand and Turkey and on maize (Zea mays) grown in Turkey. The iodine concentration in the grain, localization of iodine in different grain fractions of wheat (i.e., endosperm, bran and embryo) and iodine concentration of both brown rice and polished rice was analyzed. In short-term experiments, the translocation of iodine from older into younger leaves was also studied. Inductively coupled plasma mass spectrometry (ICP-MS) was used for analysis of iodine in plant and soil samples. Results In greenhouse experiments on wheat, soil-applied potassium iodide (KI) and potassium iodate (KIO3) at increasing rates (i.e., 0, 0.1, 0.25, 1, 2.5, 5, 10 and 20 mg I kg−1 soil) both iodine forms substantially increased iodine concentration in the shoot, with the highest shoot iodine resulting from the KI treatments. However, these soil treatments did not affect iodine concentrations in the wheat grain, with the exception of the highest iodine rates (i. e., 10 and 20 mg I kg−1 soil) which also depressed the grain yield. In contrast to the soil applications, foliar spray of KI and KIO3 at increasing rates during heading and early milk stages did enhance grain iodine concentrations up to 5- to 10-fold without affecting grain yield. Including KNO3 or a surfactant to the iodine containing foliar spray further increased the grain iodine concentration. In a short-term experiment using young wheat plants, it was found that iodine is translocated from older into younger leaves after immersion of the older leaves in solutions containing KI or KIO3. Adding KNO3 or a surfactant in the immersion solution also promoted leaf absorption and translocation of iodine into younger leaves. Field experiments conducted in different countries confirmed that foliar application with increasing rates of iodine significantly increased grain iodine concentrations in wheat, brown rice and maize. This increase was also found in the iodine concentration of the endosperm part of wheat grains and in polished rice. Conclusions The results of the present study clearly show that foliar application of iodine containing fertilizers is highly effective in increasing grain iodine concentrations in wheat, rice and maize. Presented results suggest that iodine is translocated from shoot to grain by transport in the phloem. Spraying KIO3 up to the rate of 0.05% w/v is suggested as the optimal form and rate to be used in agronomic biofortification with iodine. The substantial increase in grain iodine concentrations could contribute to the prevention of iodine deficiency in human populations with low dietary iodine intake. The reasons behind the higher effectiveness of foliar-applications compared to the soil applications of iodine fertilizers in improving grain iodine concentration are discussed

    MEF2B is a member of the BCL6 gene transcriptional complex and induces its expression in diffuse large B-cell lymphoma of the germinal center B-cell-like type

    No full text
    Myocyte enhancer-binding factor 2B (MEF2B) has been implicated as a transcriptional regulator for BCL6. However, details about the interaction between MEF2B and BCL6 during expression, as well as the relationship of MEF2B to the expression of other germinal center (GC) markers, have not yet been fully explained. Using germinal center B-cell-like diffuse large B-cell lymphoma (GC-DLBCL) and activated B-cell diffuse large B-cell lymphoma (ABC-DLBCL) cell lines, we analyzed the expression of MEF2B and its associations with BCL6, CD10, and ERK. Furthermore, small interfering RNA (siRNA) was used to study the possible effects of MEF2B knockdown on these proteins and cell growth. Analysis of the BCL6 transcriptional complex was performed using electrophoretic mobility shift assay. The correlation between MEF2B expression and the genetic type of DLBCL was assessed using immunohistochemistry on 111 patient samples, and via in silico analysis of publicly available microarray (Gene Expression Omnibus (GEO)) datasets. Our results indicate that the expression of MEF2B protein is important for the growth of GC-DLBCL cells, as evidenced by MEF2B knockdown inhibition of cell growth and the subsequent suppression of BCL6, CD10, and ERK phosphorylation. Analysis of BCL6 transcription factors in nuclear extracts of MEF2-expressing DLBCL cells showed involvement of MEF2B with AP-2 alpha and BCL6 proteins in the formation of the BCL6 gene transcriptional complex. Indeed, differential expression of MEF2B in the GC-DLBCL is statistically significant compared to the ABC-DLBCL in the GEO datasets, as well as in tissue microarray, as indicated via immunohistochemistry (Visco-Young algorithm). Our findings indicate that MEF2B is an essential component of the BCL6 gene transcriptional complex for the regulation of DLBCL growth via the promotion of BCL6 expression. Beyond its regulatory role in DLBCL growth, MEF2B expression correlated positively with BCL6 and CD10 expression, and was preferentially expressed in the GBC-DLBCL group

    Plant-Mediated Synthesis and Applications of Iron Nanoparticles

    No full text
    corecore