6 research outputs found

    Disposable Voltammetric Sensor Modified with Block Copolymer-Dispersed Graphene for Simultaneous Determination of Dopamine and Ascorbic Acid in Ex Vivo Mouse Brain Tissue

    No full text
    Dopamine (DA) and ascorbic acid (AA) are two important biomarkers with similar oxidation potentials. To facilitate their simultaneous electrochemical detection, a new voltammetric sensor was developed by modifying a screen-printed carbon electrode (SPCE) with a newly synthesized block copolymer (poly(DMAEMA-b-styrene), PDbS) as a dispersant for reduced graphene oxide (rGO). The prepared PDbS–rGO and the modified SPCE were characterized using a range of physical and electrochemical techniques including Raman spectroscopy, scanning electron microscopy, transmission electron microscopy, cyclic voltammetry, electrochemical impedance spectroscopy, and linear sweep voltammetry. Compared to the bare SPCE, the PDbS–rGO-modified SPCE (PDbS–rGO/SPCE) showed better sensitivity and peak-to-peak separation for DA and AA in mixed solutions. Under the optimum conditions, the dynamic linear ranges for DA and AA were 0.1–300 and 10–1100 µM, and the detection limits were 0.134 and 0.88 µM (S/N = 3), respectively. Furthermore, PDbS–rGO/SPCE exhibited considerably enhanced anti-interference capability, high reproducibility, and storage stability for four weeks. The practical potential of the PDbS–rGO/SPCE sensor for measuring DA and AA was demonstrated using ex vivo brain tissues from a Parkinson’s disease mouse model and the control

    Graphene quantum dot nanocomposites: electroanalytical and optical sensor technology perspective

    No full text
    Abstract Electroanalytical and optical techniques are widely used in the development of nanomaterials-based sensor platforms. These techniques have a quick response, high sensitivity, and selectivity. Electroanalytical and optical techniques are widely used in the development of nanomaterial-based sensor platforms. These sensors must be able to detect biomarkers, pathogens, toxins, and pharmaceuticals in biological matrices associated with cardiovascular disease, cancer, and neurodegenerative diseases. Considering these pathophysiologies, numerous investigations have been undertaken to develop sensors for early diagnosis and treatment, utilizing nanomaterials such as quantum dots. Graphene quantum dots (GQDs), which are ideally nanometer-sized graphene fragments, have recently received increased attention due to their excellent physicochemical properties such as fast electron mobility, photostability, water solubility, biocompatibility, high specific surface area, and nontoxicity. Apart from the properties mentioned above, GQDs provide π–π interactions, electrostatic, and covalent interactions with an analyte, and ease of synthesis as well as the ability to combine with other nanomaterials, which have enabled their use in various sensing platforms. This review summarizes recent advances in GQDs-based nanocomposites for sensor applications, with a focus on electroanalytical and optical techniques, as well as current challenges and future prospects

    Enzyme Nanosheet-Based Electrochemical Aspartate Biosensor for Fish Point-of-Care Applications

    No full text
    Bacterial infections in marine fishes are linked to mass mortality issues; hence, rapid detection of an infection can contribute to achieving a faster diagnosis using point-of-care testing. There has been substantial interest in identifying diagnostic biomarkers that can be detected in major organs to predict bacterial infections. Aspartate was identified as an important biomarker for bacterial infection diagnosis in olive flounder (Paralichthys olivaceus) fish. To determine aspartate levels, an amperometric biosensor was designed based on bi-enzymes, namely, glutamate oxidase (GluOx) and aspartate transaminase (AST), which were physisorbed on copolymer reduced graphene oxide (P-rGO), referred to as enzyme nanosheets (GluOx-ASTENs). The GluOx-ASTENs were drop casted onto a Prussian blue electrodeposited screen-printed carbon electrode (PB/SPCE). The proposed biosensor was optimized by operating variables including the enzyme loading amount, coreactant (α-ketoglutarate) concentration, and pH. Under optimal conditions, the biosensor displayed the maximum current responses within 10 s at the low applied potential of −0.10 V vs. the internal Ag/AgCl reference. The biosensor exhibited a linear response from 1.0 to 2.0 mM of aspartate concentrations with a sensitivity of 0.8 µA mM−1 cm−2 and a lower detection limit of approximately 500 µM. Moreover, the biosensor possessed high reproducibility, good selectivity, and efficient storage stability

    Anti-Inflammatory Effects of the Novel Barbiturate Derivative MHY2699 in an MPTP-Induced Mouse Model of Parkinson’s Disease

    No full text
    Parkinson’s disease (PD) is one of the most common neurodegenerative disorders, and is caused by the death of dopamine neurons and neuroinflammation in the striatum and substantia nigra. Furthermore, the inflammatory response in PD is closely related to glial cell activation. This study examined the neuroprotective effects of the barbiturate derivative, MHY2699 [5-(4-hydroxy 3,5-dimethoxybenzyl)-2 thioxodihydropyrimidine-4,6(1H,5H)-dione] in a mouse model of PD. MHY2699 ameliorated MPP⁺-induced astrocyte activation and ROS production in primary astrocytes and inhibited the MPP⁺-induced phosphorylation of MAPK and NF-κB. The anti-inflammatory effects of MHY2699 in protecting neurons were examined in an MPTP-induced mouse model of PD. MHY2699 inhibited MPTP-induced motor dysfunction and prevented dopaminergic neuronal death, suggesting that it attenuated neuroinflammation. Overall, MHY2699 has potential as a neuroprotective treatment for PD
    corecore