11 research outputs found

    Remodeling of arterial tone regulation in postnatal development: focus on smooth muscle cell potassium channels

    Get PDF
    Maturation of the cardiovascular system is associated with crucial structural and functional remodeling. Thickening of the arterial wall, maturation of the sympathetic innervation, and switching of the mechanisms of arterial contraction from calcium-independent to calcium-dependent occur during postnatal development. All these processes promote an almost doubling of blood pressure from the moment of birth to reaching adulthood. This review focuses on the developmental alterations of potassium channels functioning as key smooth muscle membrane potential determinants and, consequently, vascular tone regulators. We present evidence that the pattern of potassium channel contribution to vascular control changes from K(ir)2, K(v)1, K(v)7 and TASK-1 channels to BK(Ca) channels with maturation. The differences in the contribution of potassium channels to vasomotor tone at different stages of postnatal life should be considered in treatment strategies of cardiovascular diseases associated with potassium channel malfunction

    MAPKs are highly abundant but do not contribute to α1-adrenergic contraction of rat saphenous arteries in the early postnatal period

    Get PDF
    Previously, the abundance of p42/44 and p38 MAPK proteins had been shown to be higher in arteries of 1- to 2-week-old compared to 2- to 3-month-old rats. However, the role of MAPKs in vascular tone regulation in early ontogenesis remains largely unexplored. We tested the hypothesis that the contribution of p42/44 and p38 MAPKs to the contraction of peripheral arteries is higher in the early postnatal period compared to adulthood. Saphenous arteries of 1- to 2-week-old and 2- to 3-month-old rats were studied using wire myography and western blotting. The α(1)-adrenoceptor agonist methoxamine did not increase the phosphorylation level of p38 MAPK in either 1- to 2-week-old or 2- to 3-month-old rats. Accordingly, inhibition of p38 MAPK did not affect arterial contraction to methoxamine in either age group. Methoxamine increased the phosphorylation level of p42/44 MAPKs in arteries of 2- to 3-month-old and of p44 MAPK in 1- to 2-week-old rats. Inhibition of p42/44 MAPKs reduced methoxamine-induced contractions in arteries of 2- to 3-month-old, but not 1- to 2-week-old rats. Thus, despite a high abundance in arterial tissue, p38 and p42/44 MAPKs do not regulate contraction of the saphenous artery in the early postnatal period. However, p42/44 MAPK activity contributes to arterial contractions in adult rats

    The effects of acidosis on eNOS in the systemic vasculature: a focus on early postnatal ontogenesis

    Get PDF
    The activity of many vasomotor signaling pathways strongly depends on extracellular/intracellular pH. Nitric oxide (NO) is one of the most important vasodilators produced by the endothelium. In this review, we present evidence that in most vascular beds of mature mammalian organisms metabolic or respiratory acidosis increases functional endothelial NO-synthase (eNOS) activity, despite the observation that direct effects of low pH on eNOS enzymatic activity are inhibitory. This can be explained by the fact that acidosis increases the activity of signaling pathways that positively regulate eNOS activity. The role of NO in the regulation of vascular tone is greater in early postnatal ontogenesis compared to adulthood. Importantly, in early postnatal ontogenesis acidosis also augments functional eNOS activity and its contribution to the regulation of arterial contractility. Therefore, the effect of acidosis on total peripheral resistance in neonates may be stronger than in adults and can be one of the reasons for an undesirable decrease in blood pressure during neonatal asphyxia. The latter, however, should be proven in future studies

    TWIK-related acid-sensitive potassium channels (TASK-1) emerge as contributors to tone regulation in renal arteries at alkaline pH

    Get PDF
    Aim: TASK-1 channels are established regulators of pulmonary artery tone but their contribution to the regulation of vascular tone in systemic arteries is poorly understood. We tested the hypothesis that TASK-1 channel functional impact differs among systemic vascular beds, that this is associated with differences in their expression and may increase with alkalization of the extracellular environment. Therefore, we evaluated the expression level of TASK-1 channels and their vasomotor role in mesenteric and renal arteries. Methods: Pulmonary, mesenteric and renal arteries from male Wistar rats were used for TASK-1 channel mRNA (qPCR) and protein content (Western blotting) measurements. The functional role of TASK-1 channels was studied by wire myography using the TASK-1 channel blocker AVE1231. In some experiments, the endothelium was removed with a rat whisker. Results: Expression levels of both mRNA and protein of the TASK-1 channel pore-forming subunit were highest in pulmonary arteries, lowest in mesenteric arteries and had an intermediate value in renal arteries. Blockade of TASK-1 channels by 1 µM AVE1231 increased U46619-induced contractile responses of pulmonary arteries but did not affect basal tone and contractile responses to methoxamine of mesenteric and renal arteries at physiological extracellular pH (pHo = 7.41). At alkaline extracellular pH = 7.75 (increase of NaHCO3 to 52 mM) AVE1231 evoked the development of basal tone and increased contractile responses to low concentrations of methoxamine in renal but not mesenteric arteries. This effect was independent of the endothelium. Conclusion: In the rat systemic circulation, TASK-1 channels are abundant in renal arteries and have an anticontractile function under conditions of extracellular alkalosis

    Changes in Endothelial Nitric Oxide Production in Systemic Vessels during Early Ontogenesis—A Key Mechanism for the Perinatal Adaptation of the Circulatory System

    Get PDF
    Nitric oxide (NO) produced in the wall of blood vessels is necessary for the regulation of vascular tone to ensure an adequate blood supply of organs and tissues. In this review, we present evidence that the functioning of endothelial NO-synthase (eNOS) changes considerably during postnatal maturation. Alterations in NO-ergic vasoregulation in early ontogeny vary between vascular beds and correlate with the functional reorganization of a particular organ. Importantly, the anticontractile effect of NO can be an important mechanism responsible for the protectively low blood pressure in the immature circulatory system. The activity of eNOS is regulated by a number of hormones, including thyroid hormones which are key regulators of the perinatal developmental processes. Maternal thyroid hormone deficiency suppresses the anticontractile effect of NO at perinatal age. Such alterations disturb perinatal cardiovascular homeostasis and lead to delayed occurring cardiovascular pathologies in adulthood. The newly discovered role of thyroid hormones may have broad implications in cardiovascular medicine, considering the extremely high prevalence of maternal hypothyroidism in human society

    Intrauterine Nitric Oxide Deficiency Weakens Differentiation of Vascular Smooth Muscle in Newborn Rats

    No full text
    Nitric oxide (NO) deficiency during pregnancy is a key reason for preeclampsia development. Besides its important vasomotor role, NO is shown to regulate the cell transcriptome. However, the role of NO in transcriptional regulation of developing smooth muscle has never been studied before. We hypothesized that in early ontogeny, NO is important for the regulation of arterial smooth muscle-specific genes expression. Pregnant rats consumed NO-synthase inhibitor L-NAME (500 mg/L in drinking water) from gestational day 10 till delivery, which led to an increase in blood pressure, a key manifestation of preeclampsia. L-NAME reduced blood concentrations of NO metabolites in dams and their newborn pups, as well as relaxations of pup aortic rings to acetylcholine. Using qPCR, we demonstrated reduced abundances of the smooth muscle-specific myosin heavy chain isoform, α-actin, SM22α, and L-type Ca2+-channel mRNAs in the aorta of newborn pups from the L-NAME group compared to control pups. To conclude, the intrauterine NO deficiency weakens gene expression specific for a contractile phenotype of arterial smooth muscle in newborn offspring
    corecore