16 research outputs found
Mechanical Design and Analysis of Allāterrain Mobile Robot
This paper presents the conceptual mechanical analysis of the all-terrain mobile robot (AMoBo). The locomotion concept for all-terrain mobile robot is based on six independent motorized wheels. The mobile robot has a steering wheel in the front and the rear, and two wheels arranged on a bogie on each side. The front wheel has a spring suspension to guarantee optimal ground contact of all wheels at any time. The steering of the vehicle is realized by synchronizing the steering of the front and rear wheels and the speed difference of the bogie wheels. A prototype AMoBo was designed and fabricated. The developed prototype is about 66 cm in length and 23 cm in height. Testing size results show that the prototype able to overcome obstacles of same height as its wheel diameter and can climb stairs with step height of over 10 cm. Finite element analysis was used to analyse and verify the strength of each critical part of AMoBo. The base plate appeared to be the critical part with the highest shear stress and the lowest safety factor
Recent progress on catalytic co-pyrolysis of plastic waste and lignocellulosic biomass to liquid fuel: The influence of technical and reaction kinetic parameters
Discharge of non-biodegradable plastic waste and lignocellulosic biomass into the environment, and the resultant pollution has persistently increased all over the globe. This activity poses a threat not only to mankind, but also to the environment. In addressing this challenge, catalytic co-pyrolysis (CCP) of plastic waste and lignocellulosic biomass is one of the attractive ways used to reduce these types of waste, while simultaneously obtaining an alternative for conventional fossil fuel. This article has critically reviewed the literature on CCP in several areas, especially the impact of technical parameters, such as heating systems, experimental conditions, and synergistic effect of the CCP of plastic and biomass wastes. The kinetics and reaction pathways of CCP of plastic and biomass wastes are also discussed. The analysis and information presented in this review may be used in future studies to develop a sustainable and efficient heating processes in pyrolysis system to re-engineer plastic and biomass wastes.The authors thankfully acknowledge the support obtained from Lotte Chemical Titan (M), Berhad, and Universiti Sains Malaysia (Grant Number: 304/PJKIMIA/6050422/L128), in the form of research grant and facilities which brought forth this article.Scopu
Increased numbers of oligodendrocyte lineage cells in the optic nerves of cerebroside sulfotransferase knockout mice
Sulfatide is a myelin glycolipid that functions in the formation of paranodal axo-glial junctions in vivo and in the regulation of oligodendrocyte differentiation in vitro. Cerebroside sulfotransferase (CST) catalyzes the production of two sulfated glycolipids, sulfatide and proligodendroblast antigen, in oligodendrocyte lineage cells. Recent studies have demonstrated significant increases in oligodendrocytes from the myelination stage through adulthood in brain and spinal cord under CST-deficient conditions. However, whether these result from excess migration or in situ proliferation during development is undetermined. In the present study, CST-deficient optic nerves were used to examine migration and proliferation of oligodendrocyte precursor cells (OPCs) under sulfated glycolipid-deficient conditions. In adults, more NG2-positive OPCs and fully differentiated cells were observed. In developing optic nerves, the number of cells at the leading edge of migration was similar in CST-deficient and wild-type mice. However, BrdU+ proliferating OPCs were more abundant in CST-deficient mice. These results suggest that sulfated glycolipids may be involved in proliferation of OPCs in vivo
Preparation of Alpinia galanga stem based activated carbon via single-step microwave irradiation for cationic dye removal
The focal point of this study is to synthesis Alpinia galanga Stem-based activated carbon (AGSAC) by using single-step microwave irradiation and testing it for the removal of cationic dye, methylene blue (MB) from aqueous solution. AGSAC was prepared under the flow of carbon dioxide (CO2) for the gasification effect. The factors of contact time (from 0 to 24 h) and initial concentration (25-300 mg/L) on the adsorption performance of AGSAC were studied. With the aid of response surface methodology (RSM) via face-centered composite design (FCD), optimum preparation conditions for AGSAC were found to be 400 W for radiation power and 4 min for activation time, respectively, which resulted in 95.67% of MB dye removal. The optimized AGSAC has a Bruneaur-Emmet-Teller (BET) surface area of 172.19 m2/g, mesopore surface area of 103.32 m2/g, a total pore volume of 0.1077 cm3/g, and fixed carbon content of 47.63%. The pore diameter of AGSAC was found to be a mesoporous type with a pore diameter of 2.50 nm. Freundlich isotherm and pseudo-second-order were found as the best-fitted model for MB adsorption equilibrium and kinetic respectively onto prepared AGSAC. Intraparticle diffusion was found to be the rate-limiting step
Desorption of chloramphenicol from ordered mesoporous carbon-alginate beads: Effects of operating parameters, and isotherm, kinetics, and regeneration studies
This study has investigated the desorption of an emerging contaminant, known as chloramphenicol (CPC), from ordered mesoporous carbon (OMC)-alginate beads. The effects of initial concentration, operating temperature, and a selection of eluents (water, ethanol, and sodium chloride (NaCl)) on the whole desorption process were analysed. The desorption efficiency was found to decrease with increasing temperature, an indication for a favourable desorption process at a lower temperature range. NaCl was the most effective eluent for the CPC desorption process, followed by ethanol and water. The use of 1 M NaCl has resulted in the highest desorption efficiency of 84.7%. Redlich-Peterson and Freundlich isotherm models fitted well to the CPC desorption experimental data. The desorption kinetic data for ethanol and NaCl as eluents fitted well to the pseudo-second order kinetic model. Meanwhile, distilled water as an eluent was best fitted to the pseudo-first order kinetic model. The CPC adsorption efficiency began to notably decrease from 78.9% to 48.5% after five consecutive adsorption/desorption cycles. Similarly, the desorption efficiency began to decrease from 76.0% in the first cycle down to 35.2% in the fifth cycle. These findings demonstrated that the OMC-alginate beads are a very promising adsorbent with excellent desorption and reusability characteristics towards the targeted antibiotic, CPC.This work was supported by the Research University Incentives (RUI) Grant ( 1001/PJKIMIA/8014064 ) and USM Fellowship Program provided by Universiti Sains Malaysia.Scopu
Amino-functionalised silica-grafted molecularly imprinted polymers for chloramphenicol adsorption
This research investigated the liquid-phase removal of chloramphenicol (CAP), an emerging contaminant using molecularly imprinted polymers (MIPs). CAP adsorption profiles, equilibrium, and kinetics were analysed. The adsorption performance was compared between MIPs and non-imprinted polymers (NIPs), both with silica or without silica grafting. The imprinting factor (IF) values for the Si@MIPs-CAP were significantly higher than the IF values for MIPs-CAP adsorbent at pH 8. The kinetics of CAP adsorption was fitted to pseudo-second-order kinetics models for MIPs-CAP (R2 = 0.9998) and Si@MIPs-CAP (R2 = 0.9999). The adsorption isotherm of Si@MIPs-CAP was well represented by the Langmuir model (R2 = 0.9991), while the Freundlich isotherm model (R2 = 0.9998) provided the best fit for MIPs-CAP. The maximum monolayer adsorption capacities, Qmax, for Si@MIPs-CAP (32.26 mg g-1) were higher than the Qmax for Si@NIPs-CAP (29.6 mg g-1). These results suggested that the silica-grafted molecularly imprinted polymers can be employed as a potential water-compatible adsorbent for the selective adsorption and removal of CAP from aqueous phase.This work was partly supported by the World Bank Robert S. McNamara Fellowship Program and the Ministry of Higher Education Malaysia through the Fundamental Research Grant Scheme ( 6071330 ). The authors are grateful to the Division of Pure and Applied Biochemistry, Lund University, Sweden and to School of Chemical Engineering, Universiti Sains Malaysia for supporting and providing laboratory facilities.Scopu
Arab West Report 2009, Weeks 02-52: Investigative Reporting into Muslim-Christian Relations and Monastic Life
This dataset contains the Arab-West Report special reports that were published in 2009.
This dataset mainly contains the writings of Cornelis Hulsman, Drs., among other authors on topics related to Muslim- Christian relations and interfaith dialogue Notably, this dataset contains certain reports related to the Christian faith in Egypt, Monastic life and Coptic Traditions.
Some of the articles addressed Muslim-Christian incidents and sectarian tensions that took place in 2009 in Upper Egypt. Articles also address the situation of civil society organizations in Egypt.
Additionally, reports document field visits by the Arab-West Report interns and interviews conducted with intellectuals and clergymen.
Furthermore, it contained commentary on published material from other sources (reviews / critique of articles)