11 research outputs found

    Natural Selection Plays an Important Role in Shaping the Codon Usage of Structural Genes of the Viruses Belonging to the Coronaviridae Family

    No full text
    Viruses belonging to the Coronaviridae family have a single-stranded positive-sense RNA with a poly-A tail. The genome has a length of ~29.9 kbps, which encodes for genes that are essential for cell survival and replication. Different evolutionary constraints constantly influence the codon usage bias (CUB) of different genes. A virus optimizes its codon usage to fit the host environment on which it savors. This study is a comprehensive analysis of the CUB for the different genes encoded by viruses of the Coronaviridae family. Different methods including relative synonymous codon usage (RSCU), an Effective number of codons (ENc), parity plot 2, and Neutrality plot, were adopted to analyze the factors responsible for the genetic evolution of the Coronaviridae family. Base composition and RSCU analyses demonstrated the presence of A-ended and U-ended codons being preferred in the 3rd codon position and are suggestive of mutational selection. The lesser ENc value for the spike ‘S’ gene suggests a higher bias in the codon usage of this gene compared to the other structural genes. Parity plot 2 and neutrality plot analyses demonstrate the role and the extent of mutational and natural selection towards the codon usage pattern. It was observed that the structural genes of the Coronaviridae family analyzed in this study were at the least under 84% influence of natural selection, implying a major role of natural selection in shaping the codon usage

    Characterization of a strain of quaranfil virus isolated from soft ticks in India. Is quaranfil virus an unrecognized cause of disease in human and animals?”

    No full text
    The soft ticks collected during a field survey in Karnataka state, India, in 1983, yielded a novel virus isolate, which caused mortality in an infant mouse upon inoculation. Attempts at characterizing the virus using the conventional methods were unsuccessful, which prompted us to study it by Next-Generation Sequencing (NGS). This virus isolate was obtained from the viral repository of National Institute of Virology, and an initial virus stock was prepared as a mouse brain homogenate. The virus stock showed cytopathic effects in different cell-lines and was used in NGS. Based on the complete genome sequence, obtained using de novo and reference mapping approach, the virus isolate was identified as a Quaranfil virus (QRFV) belonging to the family Orthomyxoviridae, genus Quaranjavirus. The genome size of the virus is 11,427 nucleotides which consist of 6 segments encoding six proteins. Homology analysis suggested this isolate as similar to QRFV of Afghanistan. In silico analysis showed the HA protein secondary structure to be a class III penetrance similar to Thogotovirus. QRFV was first isolated in 1953 from ticks [Cairo, Egypt] and subsequently reported from other geographical areas. This is the first report describing the presence of QRFV from India. This discovery emphasizes the need for investigating mild febrile illness cases with influenza-like symptoms, particularly in the area of high risk for tick bites

    Equine Encephalosis Virus in India, 2008

    No full text
    A virus isolated from a sick horse from India in 2008 was confirmed by next-generation sequencing analysis to be equine encephalosis virus (EEV). EEV in India is concerning because several species of Culicoides midge, which play a major role in EEV natural maintenance and transmission, are present in this country

    Possible Role of Accessory Proteins in the Viral Replication for the 20I/501Y.V1 (B.1.1.7) SARS CoV-2 Variant

    No full text
    The emergence of new severe acute respiratory syndrome coronavirus-2 (SARS CoV-2) has been a global concern. The B.1.1.7 variant of SARS CoV-2 is reported to cause higher transmission. The study investigates the replication cycle and transcriptional pattern of the B.1.1.7 to hypothesis the possible role of different genes in viral replication. It was observed that the B.1.1.7 variant required a longer maturation time. The transcriptional response demonstrated higher expression of ORF6 and ORF8 compared to nucleocapsid transcript till the eclipse period which might influence higher viral replication. The number of infectious viruses titer is higher in the B.1.1.7, despite a lesser copy number than B.1, indicating higher transmissibility. The experimental evidence published linked ORF6 and ORF8 to play important role in replication and we also observed their higher expression. This leads us to hypothesis the possible role of ORF6 and ORF8 in B.1.1.7 higher replication which causes higher transmission

    Isolation and Genomic Characterization of SARS-CoV-2 Omicron Variant Obtained from Human Clinical Specimens

    No full text
    Due to the failure of virus isolation of the Omicron variant in Vero CCL-81 from the clinical specimens of COVID-19 cases, an initial in vivo and subsequent in vitro approach was utilized for the isolation of the virus. A total of 74 oropharyngeal/nasopharyngeal specimens were collected from SARS-CoV-2 positive international travellers and a contact case at Delhi and Mumbai, India. All the specimens were sequenced using next-generation sequencing and simultaneously inoculated onto Vero CCL-81 cells for virus isolation. Subsequently, two omicron positive specimens were inoculated into Syrian hamsters for two passages. The initial passage of the positive hamster specimens was inoculated onto Vero CCL-81 cells. The clinical specimens, hamster specimens, and Vero CCL-81 passages were sequenced to assess the mutational changes in different host species. The replication of the Omicron variant in hamsters was confirmed with the presence of a high viral load in nasal turbinate and lung specimens of both passages. The successful isolation of the virus from hamster specimens with Vero CCL-81 was observed with cytopathic effect in infected cells and high viral load in the cell suspension. The genome analysis revealed the presence of L212C mutation, Tyrosine 69 deletion, and C25000T nucleotide change in spike gene of hamster passage sequences and an absence of V17I mutation in E gene in hamster passage sequences, unlike human clinical specimen and Vero CCL-81 passages. No change was observed in the furin cleavage site in any of the specimen sequences, suggesting intact pathogenicity of the virus isolate. Our data demonstrated successful isolation of the Omicron variant with the in vivo method first followed by in vitro method. The virus isolate could be used in the future to explore different aspects of the Omicron variant

    An Epidemiological Analysis of SARS-CoV-2 Genomic Sequences from Different Regions of India

    No full text
    The number of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) cases is increasing in India. This study looks upon the geographic distribution of the virus clades and variants circulating in different parts of India between January and August 2020. The NPS/OPS from representative positive cases from different states and union territories in India were collected every month through the VRDLs in the country and analyzed using next-generation sequencing. Epidemiological analysis of the 689 SARS-CoV-2 clinical samples revealed GH and GR to be the predominant clades circulating in different states in India. The northern part of India largely reported the ‘GH’ clade, whereas the southern part reported the ‘GR’, with a few exceptions. These sequences also revealed the presence of single independent mutations—E484Q and N440K—from Maharashtra (first observed in March 2020) and Southern Indian States (first observed in May 2020), respectively. Furthermore, this study indicates that the SARS-CoV-2 variant (VOC, VUI, variant of high consequence and double mutant) was not observed during the early phase of virus transmission (January–August). This increased number of variations observed within a short timeframe across the globe suggests virus evolution, which can be a step towards enhanced host adaptation

    Clinical Characterization and Genomic Analysis of Samples from COVID-19 Breakthrough Infections during the Second Wave among the Various States of India

    No full text
    From March to June 2021, India experienced a deadly second wave of COVID-19, with an increased number of post-vaccination breakthrough infections reported across the country. To understand the possible reason for these breakthroughs, we collected 677 clinical samples (throat swab/nasal swabs) of individuals from 17 states/Union Territories of the country who had received two doses (n = 592) and one dose (n = 85) of vaccines and tested positive for COVID-19. These cases were telephonically interviewed and clinical data were analyzed. A total of 511 SARS-CoV-2 genomes were recovered with genome coverage of higher than 98% from both groups. Analysis of both groups determined that 86.69% (n = 443) of them belonged to the Delta variant, along with Alpha, Kappa, Delta AY.1, and Delta AY.2. The Delta variant clustered into four distinct sub-lineages. Sub-lineage I had mutations in ORF1ab A1306S, P2046L, P2287S, V2930L, T3255I, T3446A, G5063S, P5401L, and A6319V, and in N G215C; Sub-lineage II had mutations in ORF1ab P309L, A3209V, V3718A, G5063S, P5401L, and ORF7a L116F; Sub-lineage III had mutations in ORF1ab A3209V, V3718A, T3750I, G5063S, and P5401L and in spike A222V; Sub-lineage IV had mutations in ORF1ab P309L, D2980N, and F3138S and spike K77T. This study indicates that majority of the breakthrough COVID-19 clinical cases were infected with the Delta variant, and only 9.8% cases required hospitalization, while fatality was observed in only 0.4% cases. This clearly suggests that the vaccination does provide reduction in hospital admission and mortality
    corecore