3 research outputs found

    Single-Stage Externalized Locked Plating for Treatment of Unstable Meta-Diaphyseal Tibial Fractures

    No full text
    (1) Background: Unstable meta-diaphyseal tibial fractures represent a heterogeneous group of injuries. Recently, good clinical results have been reported when applying a technique of externalized locked plating in appropriate cases, highlighting its advantage in terms of less additional tissue injury compared with conventional methods of fracture fixation. The aims of this prospective clinical cohort study were, firstly, to investigate the biomechanical and clinical feasibility and, secondly, to evaluate the clinical and functional outcomes of single-stage externalized locked plating for treatment of unstable, proximal (intra- and extra-articular) and distal (extra-articular), meta-diaphyseal tibial fractures. (2) Methods: Patients, who matched the inclusion criteria of sustaining a high-energy unstable meta-diaphyseal tibial fracture, were identified prospectively for single-stage externalized locked plating at a single trauma hospital in the period from April 2013 to December 2022. (3) Results: Eighteen patients were included in the study. Average follow-up was 21.4 ± 12.3 months, with 94% of the fractures healing without complications. The healing time was 21.1 ± 4.6 weeks, being significantly shorter for patients with proximal extra- versus intra-articular meta-diaphyseal tibial fractures, p = 0.04. Good and excellent functional outcomes in terms of HSS and AOFAS scores, and knee and ankle joints range of motion were observed among all patients, with no registered implant breakage, deep infection, and non-union. (4) Conclusions: Single-stage externalized locked plating of unstable meta-diaphyseal tibial fractures provides adequate stability of fixation with promising clinical results and represents an attractive alternative to the conventional methods of external fixation when inclusion criteria and rehabilitation protocol are strictly followed. Further experimental studies and randomized multicentric clinical trials with larger series of patients are necessary to pave the way of its use in clinical practice

    Single-Stage Externalized Locked Plating for Treatment of Unstable Meta-Diaphyseal Tibial Fractures

    Full text link
    (1) Background: Unstable meta-diaphyseal tibial fractures represent a heterogeneous group of injuries. Recently, good clinical results have been reported when applying a technique of externalized locked plating in appropriate cases, highlighting its advantage in terms of less additional tissue injury compared with conventional methods of fracture fixation. The aims of this prospective clinical cohort study were, firstly, to investigate the biomechanical and clinical feasibility and, secondly, to evaluate the clinical and functional outcomes of single-stage externalized locked plating for treatment of unstable, proximal (intra- and extra-articular) and distal (extra-articular), meta-diaphyseal tibial fractures. (2) Methods: Patients, who matched the inclusion criteria of sustaining a high-energy unstable meta-diaphyseal tibial fracture, were identified prospectively for single-stage externalized locked plating at a single trauma hospital in the period from April 2013 to December 2022. (3) Results: Eighteen patients were included in the study. Average follow-up was 21.4 ± 12.3 months, with 94% of the fractures healing without complications. The healing time was 21.1 ± 4.6 weeks, being significantly shorter for patients with proximal extra- versus intra-articular meta-diaphyseal tibial fractures, p = 0.04. Good and excellent functional outcomes in terms of HSS and AOFAS scores, and knee and ankle joints range of motion were observed among all patients, with no registered implant breakage, deep infection, and non-union. (4) Conclusions: Single-stage externalized locked plating of unstable meta-diaphyseal tibial fractures provides adequate stability of fixation with promising clinical results and represents an attractive alternative to the conventional methods of external fixation when inclusion criteria and rehabilitation protocol are strictly followed. Further experimental studies and randomized multicentric clinical trials with larger series of patients are necessary to pave the way of its use in clinical practice

    Percutaneous fixation of intraarticular joint-depression calcaneal fractures with different screw configurations – a biomechanical human cadaveric analysis

    No full text
    Purpose: The aim of this study was to assess the biomechanical performance of different screw configurations for fixation of Sanders type II B joint-depression calcaneal fractures. Methods: Fifteen human cadaveric lower limbs were amputated and Sanders II B fractures were simulated. The specimens were randomized to three groups for fixation with different screw configurations. The calcanei in Group 1 were treated with two parallel longitudinal screws, entering superiorly the Achilles tendon insertion, and two screws fixing the intraarticular posterior facet fracture line. In Group 2 two screws entered the tuberosity inferiorly to the Achilles tendon insertion and two transverse screws fixed the posterior facet. In Group 3 two screws were inserted along the bone axis, one transverse screw fixed the posterior facet and one oblique screw was inserted from the posteroplantar part of the tuberosity supporting the posterolateral part of the posterior facet. All specimens were biomechanically tested to failure under progressively increasing cyclic loading. Results: Initial stiffness did not differ significantly between the groups, P = 0.152. Cycles to 2 mm plantar movement were significantly higher in both Group 1 (15,847 ± 5250) and Group 3 (13,323 ± 4363) compared with Group 2 (4875 ± 3480), P ≤ 0.048. No intraarticular displacement was observed in any group during testing. Conclusions: From a biomechanical perspective, posterior facet support by means of buttress or superiorly inserted longitudinal screws results in less plantar movement between the calcaneal tuberosity and the anterior fragments. Inferiorly inserted longitudinal screws are associated with bigger interfragmentary movements
    corecore