360 research outputs found

    Finding the right fit: Enhancing the academic-industry link in the sector for Nutrition undergraduates – a pilot study

    Get PDF
    Academic learning experience prepares students for professional life, enriches their scientific-evidence knowledge, whereas laboratory practicals upskill their experiences applying theory into “real world” scenarios. As most undergraduate programmes are not offering placement year, students rely heavily on their initiatives and networking to maximise their continuous professional development (CPD). This study evaluated the supporting mechanisms between academia and industry/ sector and examined staff and students’ perceptions of existing academia-industry collaborations. An online survey was designed to record perceptions of undergraduate’s nutrition students. This was followed by focus groups to establish students’ perceptions of the relevant professional organisations and their related experiences outside academia. Captured students’ feedback together with the nutrition teaching academics responses in individual semi-structured interviews have portrayed the current academic-industry links, the perceived challenges/barriers and probed sensible roadmap. Six themes uncovered the need for extra nutrition-related work experiences, while the students’ perceptions reflected their learning through course progression, awareness of external opportunities and underpinned that graduate readiness improved progressively with years spent in study. The Academics’ interviews recognized the limited academic-industry collaborations and underpinned many barriers faced; more “top-down” support was identified as a strategy to enhance external links. The study provides a clear lens into the present academic-industry links within the nutrition programmes and ascertained the perceived challenges experienced by students and academics. Collaborations and centralised university communications shall promote a better university experience. Equally, staff-student partnerships will facilitate a new approach to understand both staff and students’ perspectives and enhance learning experiences within the sector

    Optimal map of the modular structure of complex networks

    Full text link
    Modular structure is pervasive in many complex networks of interactions observed in natural, social and technological sciences. Its study sheds light on the relation between the structure and function of complex systems. Generally speaking, modules are islands of highly connected nodes separated by a relatively small number of links. Every module can have contributions of links from any node in the network. The challenge is to disentangle these contributions to understand how the modular structure is built. The main problem is that the analysis of a certain partition into modules involves, in principle, as many data as number of modules times number of nodes. To confront this challenge, here we first define the contribution matrix, the mathematical object containing all the information about the partition of interest, and after, we use a Truncated Singular Value Decomposition to extract the best representation of this matrix in a plane. The analysis of this projection allow us to scrutinize the skeleton of the modular structure, revealing the structure of individual modules and their interrelations.Comment: 21 pages, 10 figure

    Orbital domain state and finite size scaling in ferromagnetic insulating manganites

    Full text link
    55Mn and 139La NMR measurements on a high quality single crystal of ferromagnetic (FM) La0.80Ca20MnO3 demonstrate the formation of localized Mn(3+,4+) states below 70 K, accompanied with strong anomalous increase of certain FM neutron Bragg peaks. (55,139)(1/T1) spin-lattice relaxation rates diverge on approaching this temperature from below, signalling a genuine phase transition at T(tr) approx. 70 K. The increased local magnetic anisotropy of the low temperature phase, the cooling-rate dependence of the Bragg peaks, and the observed finite size scaling of T(tr) with Ca (hole) doping, are suggestive of freezing into an orbital domain state, precursor to a phase transition into an inhomogeneous orbitally ordered state embodying hole-rich walls.Comment: 4 pages, 4 figure

    Survival and quality of life benefit after endoscopic management of malignant central airway obstruction

    Get PDF
    Although interventional management of malignant central airway obstruction (mCAO) is well established, its impact on survival and quality of life (QoL) has not been extensively studied.We prospectively assessed survival, QoL and dyspnea (using validated EORTC questionnaire) in patients with mCAO 1 day before interventional bronchoscopy, 1 week after and every following month, in comparison to patients who declined this approach. Material/Patients/Methods: 36 patients underwent extensive interventional bronchoscopic management as indicated, whereas 12 declined. All patients received full chemotherapy and radiotherapy as indicated. Patients of the 2 groups were matched for age, comorbidities, type of malignancy and level of obstruction. Follow up time was 8.0±8.7 (range 1-38) months.Mean survival for intervention and control group was 10±9 and 4±3 months respectively (p=0.04). QoL improved significantly in intervention group patients up to the 6(th) month (p<0.05) not deteriorating for those surviving up to 12 months. Dyspnea decreased in patients of the intervention group 1 month post procedure remaining reduced for survivors over the 12th month. Patients of the control group had worse QoL and dyspnea in all time points.Interventional management of patients with mCAO, may achieve prolonged survival with sustained significant improvement of QoL and dyspnea

    Seven years in the life of Hypergiants’ off-nets

    Get PDF

    Burn patient care lost in good manufacturing practices?

    Get PDF
    Application of cell therapies in burn care started in the early 80s in specialized hospital centers world-wide. Since 2007, cell therapies have been considered as "Advanced Therapy Medicinal Products" (ATMP), so classified by European Directives along with associated Regulations by the European Parliament. Consequently, regulatory changes have transformed the standard linear clinical care pathway into a more complex one. It is important to ensure the safety of cellular therapies used for burn patients and to standardize as much as possible the cell sources and products developed using cell culture procedures. However, we can definitely affirm that concentrating the bulk of energy and resources on the implementation of Good Manufacturing Practice (GMP) alone will have a major negative impact on the care of severely burned patients world-wide. Developing fully accredited infrastructures and training personnel (required by the new directives), along with obtaining approval for clinical trials to go ahead, can be a lengthy process.We discuss whether or not these patients could benefit from cell therapies provided by standard in-hospital laboratories, thus avoiding having to meet rigid regulations concerning the use of industrial pharmaceutical products. "Hospital Exemption" could be a preferred means to offer burn patients a customized and safe product, as many adaptations may be required throughout their treatment pathway. Patients who are in need of rapid treatment will be the ones to suffer the most from regulations intended to help them
    • 

    corecore