17 research outputs found

    Georesources and public policy

    Get PDF

    The succession of Hirnantian events based on data from Baltica: brachiopods, chitinozoans, conodonts, and carbon isotopes

    Get PDF
    The Hirnantian (late Ordovician) environment was complex and dynamic. Understanding the correct order of events and their precise correlation with a time scale are extremely important for the development of different kinds of environmental interpretations. The lower boundary of the Hirnantian Stage is officially defined by “the lowest occurrence of Normalograptus extraordinarius, the base of major positive carbon-13 isotope excursion, and the beginning of a pronounced sea-level fall associated with onset of a major glaciation” (ICS website). Our aim is to check if these events are synchronous, particularly how the situation is with respect to the Baltic. Thus several sections were analysed using mainly East Baltic data (drill cores), but also data from elsewhere, including brachiopod, chitinozoan, and conodont biostratigraphy combined with graptolite and carbon isotope data. Brachiopod faunas of the Pirgu and Porkuni stages are rather similar to those of the Ellis Bay Formation of Anticosti Island, Quebec, but the Pirgu assemblage, as well as that of the lower Ellis Bay Fm. lack key elements of the Hirnantian faunas. The primary criterion quoted above is stable, but auxiliary data like the isotope curve are less convincing. When the latter is used, it should be specified, e.g. that the carbon isotope excursion begins usually slightly earlier (in the Diceratograptus mirus Biozone), but it might be conventionally placed into the N. extraordinarius Biozone when a biostratigraphical proxy is available. The peak of the excursion is in the lower N. persculptus Biozone, but the main increase in values takes place in the N. extraordinarius Biozone. The Spinachitina taugourdeaui Biozone marks at many localities the bottom of the Hirnantian, and only the recent chitinozoan–graptolite data from the topmost Lousy Cove Member (on Anticosti Island) suggest a mid-Hirnantian age, which is at variance with common correlation schemes

    Linking the progressive expansion of reducing conditions to a stepwise mass extinction event in the late Silurian oceans

    Get PDF
    The late Ludlow Lau Event was a severe biotic crisis in the Silurian, characterized by resurgent microbial facies and faunal turnover rates otherwise only documented during the "big five" mass extinctions. This asynchronous late Silurian marine extinction event preceded an associated positive carbon isotope excursion (CIE), the Lau CIE, although a mechanism for this temporal offset remains poorly constrained. Here, we report thallium isotope data from locally reducing late Ludlow strata within the Baltic Basin to document the earliest onset of global marine deoxygenation. The initial expansion of anoxia coincided with the onset of the extinction and therefore preceded the Lau CIE. Additionally, sulfur isotope data record a large positive excursion parallel to the Lau CIE, interpreted to indicate an increase in pyrite burial associated with the widely documented CIE. This suggests a possible global expansion of euxinia (anoxic and sulfidic water column) following deoxygenation. These data are the most direct proxy evidence of paleoredox conditions linking the known extinction to the Lau CIE through the progressive expansion of anoxia, and most likely euxinia, across portions of the late Silurian oceans

    Good traditions deserve to be continued and supported

    No full text

    More about the Ordovician–Silurian transition beds at Mirny Creek, Omulev Mountains, NE Russia: carbon isotopes and conodonts

    No full text
    Profound environmental and biodiversity changes take place in the Ordovician–Silurian boundary interval. The Mirny Creek and Neznakomka River bank sections discussed in this paper expose the upper Katian–lower Rhuddanian part of the boundary beds. The succession consists of carbonate rocks, partly with bioherms, alternating with argillaceous and siltstone packages that are well dated by graptolites. Microfossils are rare, especially in the Hirnantian, but conodonts provide some useful markers just below and above the Hirnantian stage boundaries. The Hirnantian δ13C trend in the Mirny Creek section is the stratigraphically longest described so far and it has a highly specific shape. The trend commenced at the first appearance datum of Normalograptus extraordinarius or slightly below this level. The main peak occurs near the middle of the N. persculptus Biozone. Samples from the Neznakomka River suggest a somewhat wider peak interval than at Mirny Creek. Detailed comparison of the Mirny and Stirnas (Latvia) δ13C curves shows a general similarity despite great specific features of both trends. Correlation of the δ13C trends from China, Baltica and North America with that at Mirny Creek reveals a great variety of shapes of the carbon isotope curve. However, its rising limb commenced, if represented, everywhere close to the beginning of the N. extraordinarius Biozone or in terms of the Baltic succession, at the bottom of the Porkuni Regional Stage. Most likely a general shape of the HICE trend is pyramidal, which is peaking in the early N. persculptus Biochrone. Differences in the values and shape of an actual curve at different localities depend on local environmental conditions, sometimes modifying the global signal rather strongly
    corecore