3 research outputs found

    WEB-BASED INFORMATION SYSTEM SECURITY

    No full text
    Abstract: Security of web-based information systems is a particularly pressing problem. It is reduced to methods and algorithms for providing each of the three security levels which every information system should have -authentication, authorization and data security. This article proposes algorithms for user authentication, authorization and data access which are combined in one complete algorithm for providing information system security. For user authentication, data from his/her digital certificate are also used. All requests sent to the system undergo filtering. Data are protected by means of a digital signature. The authorized user private and public keys are stored in a database. The public key is stored unencrypted, while the private key within it is written in the database in an encrypted form. The symmetric key for encryption and decryption of the user private key is generated using a specific algorithm. The algorithm may be realized in each web-based application regardless its particular intended use

    Prediction of Refractive Index of Petroleum Fluids by Empirical Correlations and ANN

    No full text
    The refractive index is an important physical property that is used to estimate the structural characteristics, thermodynamic, and transport properties of petroleum fluids, and to determine the onset of asphaltene flocculation. Unfortunately, the refractive index of opaque petroleum fluids cannot be measured unless special experimental techniques or dilution is used. For that reason, empirical correlations, and metaheuristic models were developed to predict the refractive index of petroleum fluids based on density, boiling point, and SARA fraction composition. The capability of these methods to accurately predict refractive index is discussed in this research with the aim of contrasting the empirical correlations with the artificial neural network modelling approach. Three data sets consisting of specific gravity and boiling point of 254 petroleum fractions, individual hydrocarbons, and hetero-compounds (Set 1); specific gravity and molecular weight of 136 crude oils (Set 2); and specific gravity, molecular weight, and SARA composition data of 102 crude oils (Set 3) were used to test eight empirical correlations available in the literature to predict the refractive index. Additionally, three new empirical correlations and three artificial neural network (ANN) models were developed for the three data sets using computer algebra system Maple, NLPSolve with Modified Newton Iterative Method, and Matlab. For Set 1, the most accurate refractive index prediction was achieved by the ANN model, with %AAD of 0.26% followed by the new developed correlation for Set 1 with %AAD of 0.37%. The best literature empirical correlation found for Set 1 was that of Riazi and Daubert (1987), which had %AAD of 0.40%. For Set 2, the best performers were the models of ANN, and the new developed correlation of Set 2 with %AAD of refractive index prediction was 0.21%, and 0.22%, respectively. For Set 3, the ANN model exhibited %AAD of refractive index prediction of 0.156% followed by the newly developed correlation for Set 3 with %AAD of 0.163%, while the empirical correlations of Fan et al. (2002) and Chamkalani (2012) displayed %AAD of 0.584 and 0.552%, respectively

    Correlations of HTSD to TBP and Bulk Properties to Saturate Content of a Wide Variety of Crude Oils

    No full text
    Forty-eight crude oils with variations in specific gravity (0.782 ≤ SG ≤ 1.002), sulphur content (0.03 ≤ S ≤ 5.6 wt.%), saturate content (23.5 ≤ Sat. ≤ 92.9 wt.%), asphaltene content (0.1 ≤ As ≤ 22.2 wt.%), and vacuum residue content (1.4 ≤ VR ≤ 60.7 wt.%) were characterized with HTSD, TBP, and SARA analyses. A modified SARA analysis of petroleum that allows for the attainment of a mass balance ≥97 wt.% for light crude oils was proposed, a procedure for the simulation of petroleum TBP curves from HTSD data using nonlinear regression and Riazi’s distribution model was developed, and a new correlation to predict petroleum saturate content from specific gravity and pour point with an average absolute deviation of 2.5 wt.%, maximum absolute deviation of 6.6 wt.%, and bias of 0.01 wt.% was developed. Intercriteria analysis was employed to evaluate the presence of statistically meaningful relations between the different petroleum properties and to evaluate the extent of similarity between the studied petroleum crudes. It was found that the extent of similarity between the crude oils based on HTSD analysis data could be discerned from data on the Kw characterization factor of narrow crude oil fractions. The results from this study showed that contrary to the generally accepted concept of the constant Kw characterization factor, the Kw factors of narrow fractions differ from that of crude oil. Moreover, the distributions of Kw factors of the different crudes were different
    corecore