84 research outputs found

    Validation of an immunoassay to measure plasminogen-activator inhibitor-1 concentrations in human saliva

    Get PDF
    ntroduction: We have previously shown that the concentrations of D-dimer are significantly elevated in saliva compared with plasma. Saliva offers several advantages compared with blood analysis. We hypothesised that human saliva contains plasminogen activator inhibitor-1 (PAI-1) and that the concentrations are not affected by the time of saliva collection. The aim was to adopt and validate an immunoassay to quantify PAI-1 concentrations in saliva and to determine whether saliva collection time has an influence in the measurement. Materials and methods: Two saliva samples (morning and afternoon) from the same day were collected from healthy subjects (N = 40) who have had no underlying heart conditions. A customized AlphaLISA® immunoassay (PerkinElmer®, MA, USA) was adopted and used to quantify PAI-1 concentrations. We validated the analytical performance of the customized immunoassay by calculating recovery of known amount of analyte spiked in saliva. Results: The recovery (95.03%), intra- (8.59%) and inter-assay (7.52%) variations were within the acceptable ranges. The median salivary PAI-1 concentrations were 394 pg/mL (interquartile ranges (IQR) 243.4-833.1 pg/mL) in the morning and 376 (129.1-615.4) pg/mL in the afternoon and the plasma concentration was 59,000 (24,000-110,000) pg/mL. Salivary PAI-1 did not correlate with plasma (P = 0.812). Conclusions: The adopted immunoassay produced acceptable assay sensitivity and specificity. The data demonstrated that saliva contains PAI-1 and that its concentration is not affected by the time of saliva collection. There is no correlation between salivary and plasma PAI-1 concentrations. Further studies are required to demonstrate the utility of salivary PAI-1 in CVD risk factor studies

    Effective process for lipid reduction using high speed centrifugation compared with ultracentrifugation

    Get PDF
    Introduction: Reducing laboratory errors and improving patient safety is receiving a lot of attention. Lipaemic samples are cause of analytical errors and present challenges for laboratories, particularly for those without ultracentrifuges. Lipaemia can originate from physiological (postprandial metabo-lism), para-physiological causes (e.g. IV administration of lipids) as well as metabolic disturbances (e.g. hypertriglyceridaemia). Materials and methods: We have evaluated a procedure with 10 native lipaemic sample pools (triglyceride concentration range 11.6-42.7 mmol/L) for the ability to reduce lipid concentration using a high speed micro-centrifuge (double centrifuged at 21.885 x g for 15 min) compared with an ultracen-trifuge, and provide accurate results. Results of sodium, creatinine, urate, total protein, lactate dehydrogenase (LD), magnesium and, cholesterol and triglyceride analysis on a Beckman DxC800 analyser are presented. Results: Data from our tertiary level hospital showed ~0.7% of the samples received for lipid studies have triglyceride levels > 10 mmol/L which can potentially cause analytical interference. The mean differences from the neat aliquot to the ultracentrifuged and high speed centrifuged sample pools were: cholesterol 4.9 mmol/L and 3.1 mmol/L; and triglycerides 17.4 mmol/L and 15.0 mmol/L respectively. The data confirms high speed centrifugation is almost as effective as ultracentrifugation in lipid reduction. Conclusion: The procedure utilized in this study using a high speed micro-centrifuge showed it is effective in reducing lipid levels and provides a suitable alternative to ultracentrifuged samples to pro-vide accurate results

    Paraprotein interference with turbidimetric gentamicin assay

    Get PDF
    Introduction: Gentamicin due to its low level of resistance and rapid bactericidal activity is commonly used to treat gram-negative bacteria. However, due to its toxic effects it needs to be monitored. To date, no interference has been reported with gentamicin assays. Materials and methods: A patient with leg cellulitis and sepsis received a single dose of gentamicin and a sample was sent for gentamicin analysis. The sample showed high blank absorbance readings on Beckman DxC800 and DC800 analysers with various dilutions. A second sample was received and analysed on a Roche Cobas system to obtain a result. A third sample was received 107 hours later with the same results and this sample was then analysed neat and post ethanol precipitation on all the turbidimetric assays available on the DxC800 analyser. Results: The high blank absorbance was observed upon addition of the reactive reagents due to protein precipitation. Although not obvious from the patient protein results, it was shown the presence of high IgM paraprotein, 18.9 g/L (reference range 0.4-2.3 g/L) was the cause of precipitation, giving high blank readings. Of all the other turbidimetric assays, only vancomicin and valproate showed similar high blank absorbance readings. To be able to provide more rapid results it was shown ethanol could be used as a precipitant of proteins in both calibrators and patient samples with acceptable recovery. Conclusion: IgM paraprotein was identified as the cause of interference with the gentamicin, vancomicin and valproate assays. Protein interference in these assays can be overcome by precipitation with ethanol

    Policy change to improve pathology turnaround time and reduce costs – possible to do both?

    Get PDF
    Background: Overcrowding and prolonged length of stay in emergency departments (ED) are increasing problems in hospitals. Rapid availability of all laboratory results has an impact on clinical decision-making, admissions or discharge decisions and resource utilisation. Increasing number of our urinary drugs of abuse (DOA) screens had a turnaround time (TAT) of up to 33 days after the discharge of the patient. Materials and methods: Following an audit and a consultation period with clinicians using the service, a policy change was implemented to reduce the use of gas chromatography mass spectroscopy (GCMS): all requests would have a standard immunoassay (IA) test panel undertaken unless specifically they requested GCMS (including medico-legal) analysis. Results: Almost all of the clinicians interviewed had no understanding of the DOA screening or the difference in the information generated between a confirmatory GCMS urine toxicology screen and IA DOA panel. It appeared none of the patients surveyed in the audit would have had a different clinical decision made if a GCMS had not been undertaken. Post change audit showed only 4.3% of drug requests for IA also received a confirmatory GCMS testing. The estimated saving post change implementation was 127,000(AU127,000 (AU ) in test costs alone over a two year period. The TAT of GCMS results was reduced to 3-4 days. Conclusion: A laboratory-led behavioural change in test requesting is possible and sustainable provided the reason is clinically sound and accompanied by consultation and availability of advice by phone when requested on test requesting or interpretation

    Rapid serum tube technology overcomes problems associated with use of anticoagulants

    Get PDF
    Introduction: Failure to obtain complete blood clotting in serum is a common laboratory problem. Our aim was to determine whether snake prothrombin activators are effective in clotting blood and producing quality serum for analyte measurement in anticoagulated patients. Materials and methods: Whole blood clotting was studied in a total of 64 blood samples (41 controls, 20 Warfarin patients, 3 anticoagulated patients using snake venom prothrombin activator (OsPA)) with plain tubes. Coagulation was analysed using a visual assay, Hyland-Clotek and thromboelastography. Healthy control blood was spiked with a range of anticoagulants to determine the effectiveness of OsPa-induced clotting. A paired analysis of a Dabigatran patient and a control investigated the effectiveness of the OsPA clotting tubes. Biochemical analytes (N = 31) were determined for 7 samples on chemistry and immunoassay analysers and compared with commercial tubes. Results: Snake venom prothrombin activators efficiently coagulated blood and plasma spiked with heparin and commonly used anticoagulants. Clotting was observed in the presence of anticoagulants whereas no clotting was observed in BDRST tubes containing 3 U/mL of heparin. Snake venom prothrombin activator enhanced heparinised blood clotting by shortening substantially the clotting time and improving significantly the strength of the clot. Comparison of 31 analytes from the blood of five healthy and two anticoagulated participants gave very good agreement between the analyte concentrations determined. Conclusions: Our results showed that the snake venom prothrombin activators OsPA and PtPA efficiently coagulated recalcified and fresh bloods with or without added anticoagulants. These procoagulants produced high quality serum for accurate analyte measurement
    corecore