5 research outputs found

    Photoelectron-induced waves: A likely source of 150 km radar echoes and enhanced electron modes

    Full text link
    VHF radars near the geomagnetic equator receive coherent reflections from plasma density irregularities between 130 and 160 km in altitude during the daytime. Though researchers first discovered these 150 km echoes over 50 years ago and use them to monitor vertical plasma drifts, the underlying mechanism that creates them remains a mystery. This paper uses large‐scale kinetic simulations to show that photoelectrons can drive electron waves, which then enhance ion density irregularities that radars could observe as 150 km echoes. This model explains why 150 km echoes exist only during the day and why they appear at their lowest altitudes near noon. It predicts the spectral structure observed by Chau (2004) and suggests observations that can further evaluate this mechanism. It also shows the types and strength of electron modes that photoelectron‐wave interactions generate in a magnetized plasma.The authors would like to thank Juha Vierinen, David Hysell, Jorge Chau, and Roger Varney for their helpful discussions and suggestions. This material is based upon work supported by NASA under grant NNX14AI13G. This work used the XSEDE and TACC computational facilities, supported by National Science Foundation grant ACI-1053575. Simulation-produced data are archived at TACC and available upon request. (NNX14AI13G - NASA; ACI-1053575 - National Science Foundation

    Effects of ion magnetization on the Farley-Buneman instability in the solar chromosphere

    Full text link
    Intense heating in the quiet-Sun chromosphere raises the temperature from 4000 to 6500 K but, despite decades of study, the underlying mechanism remains a mystery. This study continues to explore the possibility that the Farley–Buneman instability contributes to chromospheric heating. This instability occurs in weakly ionized collisional plasmas in which electrons are magnetized, but ions are not. A mixture of metal ions generate the plasma density in the coolest parts of the chromosphere; while some ions are weakly magnetized, others are demagnetized by neutral collisions. This paper incorporates the effects of multiple, arbitrarily magnetized species of ions to the theory of the Farley–Buneman instability and examines the ramifications on instability in the chromosphere. The inclusion of magnetized ions introduces new restrictions on the regions in which the instability can occur in the chromosphere—in fact, it confines the instability to the regions in which heating is observed. For a magnetic field of 30 G, the minimum ambient electric field capable of driving the instability is 13.5 V/m at the temperature minimum.This work was supported by NSF-AGS Postdoctoral Research Fellowship Award No. 1433536 and NSF/DOE grant No. PHY-1500439. The authors also acknowledge a recent contribution from William Longley. (1433536 - NSF-AGS Postdoctoral Research Fellowship Award; PHY-1500439 - NSF/DOE grant)First author draftPublished versio

    Hybrid simulations of coupled Farley-Buneman/gradient drift instabilities in the equatorial E region ionosphere

    Full text link
    Plasma irregularities in the equatorial E region ionosphere are classified as Type I or Type II, based on coherent radar spectra. Type I irregularities are attributed to the Farley‐Buneman instability and Type II to the gradient drift instability that cascades to meter‐scale irregularities detected by radars. This work presents the first kinetic simulations of coupled Farley‐Buneman and gradient drift turbulence in the equatorial E region ionosphere for a range of zeroth‐order vertical electric fields, using a new approach to solving the electrostatic potential equation. The simulation models a collisional quasi‐neutral plasma with a warm, inertialess electron fluid and a distribution of NO+ ions. A 512 m wave with a maximum/minimum of ±0.25 of the background density perturbs the plasma. The density wave creates an electrostatic field that adds to the zeroth‐order vertical and ambipolar fields, and drives Farley‐Buneman turbulence even when these fields are below the instability threshold. Wave power spectra show that Type II irregularities develop in all simulation runs and that Type I irregularities with wavelengths of a few meters develop in the trough of the background wave in addition to Type II irregularities as the zeroth‐order electric field magnitude increases. Linear fluid theory predicts the growth of Type II irregularities reasonably well, but it does not fully capture the simultaneous growth of Type I irregularities in the region of peak total electric field. The growth of localized Type I irregularities represents a parametric instability in which the electric field of the large‐scale background wave drives pure Farley‐Buneman turbulence. These results help explain observations of meter‐scale irregularities advected by kilometer‐scale waves.This work was supported by NSF grants AGS-1007789 and PHY-1500439, and NASA grants NNX11A096G and NNX14AI13G. This work used the XSEDE and TACC computational facilities, supported by NSF grant ACI-1053575, for simulation runs. Simulation-produced data are archived at TACC and are available upon request. This work also used the Massachusetts Green High Performance Computing Center for simulation data analysis. The authors thank one reviewer for insightful comments and critiques. (AGS-1007789 - NSF; PHY-1500439 - NSF; ACI-1053575 - NSF; NNX11A096G - NASA; NNX14AI13G - NASA
    corecore