150 research outputs found
New Infrared Tools to Measure the Solar Coronal Magnetic Field.
Ph.D. Thesis. University of Hawaiʻi at Mānoa 2017
The chemical evolution of local star forming galaxies: Radial profiles of ISM metallicity, gas mass, and stellar mass and constraints on galactic accretion and winds
The radially averaged metallicity distribution of the ISM and the young
stellar population of a sample of 20 disk galaxies is investigated by means of
an analytical chemical evolution model which assumes constant ratios of
galactic wind mass loss and accretion mass gain to star formation rate. Based
on this model the observed metallicities and their gradients can be described
surprisingly well by the radially averaged distribution of the ratio of stellar
mass to ISM gas mass. The comparison between observed and model predicted
metallicity is used to constrain the rate of mass loss through galactic wind
and accretion gain in units of the star formation rate. Three groups of
galaxies are found: galaxies with either mostly winds and only weak accretion,
or mostly accretion and only weak winds, and galaxies where winds are roughly
balanced by accretion. The three groups are distinct in the properties of their
gas disks. Galaxies with approximately equal rates of mass-loss and accretion
gain have low metallicity, atomic hydrogen dominated gas disks with a flat
spatial profile. The other two groups have gas disks dominated by molecular
hydrogen out to 0.5 to 0.7 isophotal radii and show a radial exponential
decline, which is on average steeper for the galaxies with small accretion
rates. The rates of accretion (<1.0 x SFR) and outflow (<2.4 x SFR) are
relatively low. The latter depend on the calibration of the zero point of the
metallicity determination from the use of HII region strong emission lines.Comment: 19 pages, 17 figure, accepted to MNRA
Thomson scattering above solar active regions and an ad-hoc polarization correction method for the emissive corona
Thomson scattered photospheric light is the dominant constituent of the lower
solar corona's spectral continuum viewed off-limb at optical wavelengths. Known
as the K-corona, it is also linearly polarized. We investigate the possibility
of using the a priori polarized characteristics of the K-corona, together with
polarized emission lines, to measure and correct instrument-induced polarized
crosstalk. First, we derive the Stokes parameters of Thomson scattering of
unpolarized light in an irreducible spherical tensor formalism. This allows
forward synthesis of the Thomson scattered signal for the more complex scenario
of symmetry-breaking features in the incident radiation field, which could
limit the accuracy of our proposed technique. For this, we make use of an
advanced 3D radiative magnetohydrodynamic coronal model. Together with
synthesized polarized signals in the Fe XIII 10746 Angstrom emission line, we
find that an ad hoc correction of telescope and instrument-induced polarization
crosstalk is possible under the assumption of a non-depolarizing optical
system.Comment: Accepted for publication in Ap
A Study of Time-Dependent CP-Violating Asymmetries and Flavor Oscillations in Neutral B Decays at the Upsilon(4S)
We present a measurement of time-dependent CP-violating asymmetries in
neutral B meson decays collected with the BABAR detector at the PEP-II
asymmetric-energy B Factory at the Stanford Linear Accelerator Center. The data
sample consists of 29.7 recorded at the
resonance and 3.9 off-resonance. One of the neutral B mesons,
which are produced in pairs at the , is fully reconstructed in
the CP decay modes , , , () and , or in flavor-eigenstate
modes involving and (). The flavor of the other neutral B meson is tagged at the time of
its decay, mainly with the charge of identified leptons and kaons. The proper
time elapsed between the decays is determined by measuring the distance between
the decay vertices. A maximum-likelihood fit to this flavor eigenstate sample
finds . The value of the asymmetry amplitude is determined from
a simultaneous maximum-likelihood fit to the time-difference distribution of
the flavor-eigenstate sample and about 642 tagged decays in the
CP-eigenstate modes. We find , demonstrating that CP violation exists in the neutral B meson
system. (abridged)Comment: 58 pages, 35 figures, submitted to Physical Review
Measurement of the B0-anti-B0-Oscillation Frequency with Inclusive Dilepton Events
The - oscillation frequency has been measured with a sample of
23 million \B\bar B pairs collected with the BABAR detector at the PEP-II
asymmetric B Factory at SLAC. In this sample, we select events in which both B
mesons decay semileptonically and use the charge of the leptons to identify the
flavor of each B meson. A simultaneous fit to the decay time difference
distributions for opposite- and same-sign dilepton events gives ps.Comment: 7 pages, 1 figure, submitted to Physical Review Letter
Measurement of D-s(+) and D-s(*+) production in B meson decays and from continuum e(+)e(-) annihilation at √s=10.6 GeV
This is the pre-print version of the Article. The official published version can be accessed from the links below. Copyright @ 2002 APSNew measurements of Ds+ and Ds*+ meson production rates from B decays and from qq̅ continuum events near the Υ(4S) resonance are presented. Using 20.8 fb-1 of data on the Υ(4S) resonance and 2.6 fb-1 off-resonance, we find the inclusive branching fractions B(B⃗Ds+X)=(10.93±0.19±0.58±2.73)% and B(B⃗Ds*+X)=(7.9±0.8±0.7±2.0)%, where the first error is statistical, the second is systematic, and the third is due to the Ds+→φπ+ branching fraction uncertainty. The production cross sections σ(e+e-→Ds+X)×B(Ds+→φπ+)=7.55±0.20±0.34pb and σ(e+e-→Ds*±X)×B(Ds+→φπ+)=5.8±0.7±0.5pb are measured at center-of-mass energies about 40 MeV below the Υ(4S) mass. The branching fractions ΣB(B⃗Ds(*)+D(*))=(5.07±0.14±0.30±1.27)% and ΣB(B⃗Ds*+D(*))=(4.1±0.2±0.4±1.0)% are determined from the Ds(*)+ momentum spectra. The mass difference m(Ds+)-m(D+)=98.4±0.1±0.3MeV/c2 is also measured.This work was supported by DOE and NSF (USA), NSERC (Canada), IHEP (China), CEA and CNRS-IN2P3 (France), BMBF (Germany), INFN (Italy), NFR (Norway), MIST (Russia), and PPARC (United Kingdom). Individuals have received support from the Swiss NSF, A. P. Sloan Foundation, Research Corporation, and Alexander von Humboldt Foundation
Author Correction: Multi-ancestry genome-wide association analyses improve resolution of genes and pathways influencing lung function and chronic obstructive pulmonary disease risk
Correction to: Nature Geneticshttps://doi.org/10.1038/s41588-023-01314-0, published online 13 March 2023. In the version of the article initially published, the sample sizes in the main text and Supplementary Tables 1 and 2 were incorrect. In the abstract, the last paragraph of the Introduction, the first paragraph of the Results, the top box in Figure 1a and the Supplementary Information, the total sample size has been corrected from 580,869 to 588,452 participants and the size of the European cohort from 468,062 to 475,645. Some of the effect sizes in Supplementary Table 14 (columns W, Z, AC, AF) had the wrong sign. There was also an error in Supplementary Table 3 where the sample size instead of the variant count was shown for EXCEED. The errors do not affect the conclusions of the study. Additionally, two acknowledgments for use of INTERVAL pQTL and Lung eQTL consortium data were omitted from the Supplementary Information. These errors have been corrected in the Supplementary Information and HTML and PDF versions of the article
The Physics of the B Factories
This work is on the Physics of the B Factories. Part A of this book contains a brief description of the SLAC and KEK B Factories as well as their detectors, BaBar and Belle, and data taking related issues. Part B discusses tools and methods used by the experiments in order to obtain results. The results themselves can be found in Part C
Measurement of the Ratio of b Quark Production Cross Sections in Antiproton-Proton Collisions at 630 GeV and 1800 GeV
We report a measurement of the ratio of the bottom quark production cross
section in antiproton-proton collisions at 630 GeV to 1800 GeV using bottom
quarks with transverse momenta greater than 10.75 GeV identified through their
semileptonic decays and long lifetimes. The measured ratio
sigma(630)/sigma(1800) = 0.171 +/- .024 +/- .012 is in good agreement with
next-to-leading order (NLO) quantum chromodynamics (QCD)
- …