9 research outputs found

    Radiation and Polarization Signatures of 3D Multi-zone Time-dependent Hadronic Blazar Model

    Full text link
    We present a newly developed time-dependent three-dimensional multi-zone hadronic blazar emission model. By coupling a Fokker-Planck based lepto-hadronic particle evolution code 3DHad with a polarization-dependent radiation transfer code, 3DPol, we are able to study the time-dependent radiation and polarization signatures of a hadronic blazar model for the first time. Our current code is limited to parameter regimes in which the hadronic γ\gamma-ray output is dominated by proton synchrotron emission, neglecting pion production. Our results demonstrate that the time-dependent flux and polarization signatures are generally dominated by the relation between the synchrotron cooling and the light crossing time scale, which is largely independent of the exact model parameters. We find that unlike the low-energy polarization signatures, which can vary rapidly in time, the high-energy polarization signatures appear stable. As a result, future high-energy polarimeters may be able to distinguish such signatures from the lower and more rapidly variable polarization signatures expected in leptonic models.Comment: Accepted for Publication in The Astrophysical Journa

    Violent Hard X-ray Variability of Mrk 421 Observed by NuSTAR in 2013 April

    Full text link
    The well studied blazar Markarian 421 (Mrk 421, zz=0.031) was the subject of an intensive multi-wavelength campaign when it flared in 2013 April. The recorded X-ray and very high energy (VHE, E>>100 GeV) γ\gamma-ray fluxes are the highest ever measured from this object. At the peak of the activity, it was monitored by the hard X-ray focusing telescope {\it Nuclear Spectroscopic Telescope Array} ({\it NuSTAR}) and {\it Swift} X-Ray Telescope (XRT). In this work, we present a detailed variability analysis of {\it NuSTAR} and {\it Swift}-XRT observations of Mrk 421 during this flaring episode. We obtained the shortest flux doubling time of 14.01±\pm5.03 minutes, which is the shortest hard X-ray (3−-79 keV) variability ever recorded from Mrk 421 and is on the order of the light crossing time of the black hole's event horizon. A pattern of extremely fast variability events superposed on slowly varying flares is found in most of the {\it NuSTAR} observations. We suggest that these peculiar variability patterns may be explained by magnetic energy dissipation and reconnection in a fast moving compact emission region within the jet. Based on the fast variability, we derive a lower limit on the magnetic field strength of B≥0.73δ1−2/3 ν191/3B \ge 0.73 \delta_1^{-2/3} \, \nu_{19}^{1/3}~G, where δ1\delta_1 is the Doppler factor in units of 10, and ν19\nu_{19} is the characteristic X-ray synchrotron frequency in units of 101910^{19}~Hz.Comment: 23 pages, 5 figures, 2 tables, to appear in the Astrophysical Journa

    A hard gamma-ray flare from 3C 279 in 2013 December

    Get PDF
    The blazar 3C 279 exhibited twin γ-ray flares of similar intensity in 2013 December and 2014 April. In this work, we present a detailed multi-wavelength analysis of the 2013 December flaring event. Multi-frequency observations reveal the uncorrelated variability patterns with X-ray and optical–UV fluxes peaking after the γ-ray maximum. The broadband spectral energy distribution (SED) at the peak of the γ-ray activity shows a rising γ-ray spectrum but a declining optical–UV flux. This observation along with the detection of uncorrelated variability behavior rules out the one-zone leptonic emission scenario. We, therefore, adopt two independent methodologies to explain the SED: a time-dependent lepto-hadronic modeling and a two-zone leptonic radiative modeling approach. In the lepto-hadronic modeling, a distribution of electrons and protons subjected to a randomly orientated magnetic field produces synchrotron radiation. Electron synchrotron is used to explain the IR to UV emission while proton synchrotron emission is used to explain the high-energy γ-ray emission. A combination of both electron synchrotron self-Compton emission and proton synchrotron emission is used to explain the X-ray spectral break seen during the later stage of the flare. In the two-zone modeling, we assume a large emission region emitting primarily in IR to X-rays and γ-rays to come primarily from a fast-moving compact emission region. We conclude by noting that within a span of four months, 3C 279 has shown the dominance of a variety of radiative processes over each other and this reflects the complexity involved in understanding the physical properties of blazar jets in general

    The Violent Hard X-Ray Variability of Mrk 421 Observed by NuSTAR in 2013 April

    No full text
    The well-studied blazar Markarian 421 (Mrk 421, z = 0.031) was the subject of an intensive multi-wavelength campaign when it flared in 2013 April. The recorded X-ray and very high-energy (E > 100 GeV) γ-ray fluxes are the highest ever measured from this object. At the peak of the activity, it was monitored by the hard X-ray focusing telescope Nuclear Spectroscopic Telescope Array (NuSTAR) and the Swift X-Ray Telescope (XRT). In this work, we present a detailed variability analysis of NuSTAR and Swift-XRT observations of Mrk 421 during this flaring episode. We obtained the shortest flux doubling time of 14.01 ± 5.03 minutes, which is the shortest hard X-ray (3-79 keV) variability ever recorded from Mrk 421, and is on the order of the light-crossing time of the black hole's event horizon. A pattern of extremely fast variability events superposed on slowly varying flares is found in most of the NuSTAR observations. We suggest that these peculiar variability patterns may be explained by magnetic energy dissipation and reconnection in a fast-moving compact emission region within the jet. Based on the fast variability, we derive a lower limit on the magnetic field strength of B ≥ 0.73{δ }_1^(-2/3) {ν }_(19)^(1/3) G, where δ_1 is the Doppler factor in units of 10, and ν_(19) is the characteristic X-ray synchrotron frequency in units of 10^(19) Hz
    corecore