13 research outputs found

    Feasibility of Reprocessing Natural Fiber Filled Poly(lactic acid) Composites: An In-Depth Investigation

    Get PDF
    Poly(lactic acid) (PLA) based composites are biodegradable; their disposal after single use may be needless and uneconomical. Prodigal disposal of these composites could also create an environmental concern and additional demand for biobased feedstock. Under these circumstances, recycling could be an effective solution, since it will widen the composite service life and prevent the excessive use of natural resources. This research investigates an in-depth impact of recycling on the mechanical and thermomechanical properties of oak wood flour based PLA composites. Two composite formulations (30 and 50 wt% filler), each with 3 wt% coupling agent (PLA-g-MA), were produced and reprocessed six times by extrusion followed by injection molding. Measurements of fiber length and molecular weight of polymer were, respectively, carried out by gel permeation chromatography (GPC). Scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and Fourier transform infrared spectroscopy (FTIR) tools were used to study morphological and molecular alterations. With consecutive recycling, PLA composites showed a gradual decrease in strength and stiffness properties and an increase in strain properties. The 50% and 30% filler concentration of fibers in the composite showed an abrupt decrease in strength properties after six and two reprocessing cycles, respectively

    Industry and Students Perception of Capstone Projects

    No full text
    Abstract Capstone projects are designed to help students learn technical, communication and interpersonal skills that will ultimately provide them with a broad knowledge base required at the start of their professional careers. Engineering capstone experience prepares students to work in a productive manner in teams. It is expected that the students will learn problems solving, critical thinking, team work and business acumen which will benefit them in finding internships, cooperative experiences and jobs. In today's competitive environment managing expectations of employing companies as well as graduating engineering students is a challenging task. To bridge the gap between industry needs and student training, it is essential to periodically survey the student's understanding of capstone projects and compare it with expectations of employers. This task will ensure that our engineering graduates are well rounded and can become contributing engineers at their respective companies. The manuscript describes the opinions, perceptions and expectations of capstone project (ME 461 and ME 462) by graduating Mechanical Engineering students and compares it with the views and expectation of recruiting firms and hiring managers. The survey also identifies important components of capstone projects that can be modified and improved to strengthen the current format of capstone project. This work will help to better prepare students for industry careers and create an effective environment between academia and industry requirements

    Effect of Laboratory Aging on the Physical and Mechanical Properties of Wood-Polymer Composites

    No full text
    The long-term performance of wood-polymer composites (WPC) under severe weather conditions is not well known. This study evaluates the changes in physical and mechanical properties of three commercially available WPC and treated southern yellow pine (SYP) under a modified 6-cycle accelerated aging process. The accelerated aging causes warping, splitting, discoloration, and significant changes in physical and mechanical properties of SYP. The compressive and flexural strength of the WPCs show negligible changes whereas stiffness, hardness, and screw withdrawal force show considerable deterioration and some recovery during accelerated aging. The composition and manufacturing process influence the performance of WPC under accelerated aging

    Impact of Fiber Treatment on the Oil Absorption Characteristics of Plant Fibers

    No full text
    Most plant fibers are good sorbents of oil; however, synthetic sorbents have a much higher sorption capacity (SC) than plant fibers. This study evaluated the effect of fiber treatments, specifically hot-water treatment and mercerization, on the absorption characteristics of selected plant fibers. Five common plant fibers—corn residues, soybean residues, cotton burr and stem (CBS), cattail, and oak—were evaluated for their absorption characteristics in crude oil, motor oil, deionized (DO) water, and a 80:20 mix of DO water. The fiber treatments included ground fiber (control), hot-water treatment at 80 °C for 4 h and 125 °C for 4 h, mercerization at room temp for 48 h, and mercerization at 300 °C for 1 h. The absorption capacity (AC) varied with fiber type, absorption medium, and fiber treatment. Mercerization at 300 °C increased the water absorption of soybean residue up to 8 g/g. Mercerization at room temperature and the hot-water treatment at 125 °C increased the crude oil absorption capacity. After certain treatments, the crude oil absorption capacity of CBS and corn fibers increased over 5 g/g, and the motor oil absorption capacity of cattail, corn, and soybean also increased to 4 to 5 g/g

    Cellulose nanocrystal based composites: A review

    No full text
    Cellulose nanocrystals (CNC) have received much attention as renewable, biodegradable, nontoxic, and low-cost nanomaterials with some remarkable properties. Desirable engineering properties of CNC include large surface to volume ratio, high tensile strength (~10 GPa), high stiffness (~110–130 GPa), and high flexibility. They can be chemically modified to tailor their properties for high-end engineering and biomedical applications. Despite their outstanding properties, the wide-scale application is lacking due to their surface characteristics and processing challenges. To achieve their full potential safer extraction methods, improved surface modification and functionalization methods and processing techniques are being researched. This review attempts to access methods for characterizing CNC, and CNC composites as well as their emerging new applications as smart materials. The review is a valuable resource for researchers and scientists working in industry or academia to provide an update on the use of CNC materials and their composites in packaging, biomedical, and high-efficiency energy systems

    Role of Hybrid Nano-Zinc Oxide and Cellulose Nanocrystals on the Mechanical, Thermal, and Flammability Properties of Poly (Lactic Acid) Polymer

    No full text
    Biopolymers with universal accessibility and inherent biodegradability can offer an appealing sustainable platform to supersede petroleum-based polymers. In this research, a hybrid system derived from cellulose nanocrystals (CNCs) and zinc oxide (ZnO) nanoparticles was added into poly (lactic acid) (PLA) to improve its mechanical, thermal, and flame resistance properties. The ZnO-overlaid CNCs were prepared via the solvent casting method and added to PLA through the melt-blending extrusion process. The composite properties were evaluated using SEM, a dynamic mechanical analyzer (DMA), FTIR TGA, and horizontal burning tests. The results demonstrated that the incorporation of 1.5% nano-CNC-overlaid ZnO nanoparticles into PLA enhanced the mechanical and thermal characteristics and the flame resistance of the PLA matrix. Oxidative combustion of CNC-ZnO promoted char formation and flame reduction. The shielding effect from the ZnO-CNC blend served as an insulator and resulted in noncontinuous burning, which increased the fire retardancy of nanocomposites. By contrast, the addition of ZnO into PLA accelerated the polymer degradation at higher temperature and shifted the maximum degradation to lower temperature in comparison with pure PLA. For PLA composites reinforced by ZnO, the storage modulus decreased with ZnO content possibly due to the scissoring effect of ZnO in the PLA matrix, which resulted in lower molecular weight

    Deterioration in the Physico-Mechanical and Thermal Properties of Biopolymers Due to Reprocessing

    No full text
    Biopolymers are an emerging class of materials being widely pursued due to their ability to degrade in short periods of time. Understanding and evaluating the recyclability of biopolymers is paramount for their sustainable and efficient use in a cost-effective manner. Recycling has proven to be an important solution, to control environmental and waste management issues. This paper presents the first recycling assessment of Solanyl, Bioflex, polylactic acid (PLA) and PHBV using a melt extrusion process. All biopolymers were subjected to five reprocessing cycles. The thermal and mechanical properties of the biopolymers were investigated by GPC, TGA, DSC, mechanical test, and DMA. The molecular weights of Bioflex and Solanyl showed no susceptible effect of the recycling process, however, a significant reduction was observed in the molecular weight of PLA and PHBV. The inherent thermo-mechanical degradation in PHBV and PLA resulted in 20% and 7% reduction in storage modulus, respectively while minimal reduction was observed in the storage modulus of Bioflex and Solanyl. As expected from the Florry-Fox equation, recycled PLA with a high reduction in molecular weight (78%) experienced 9% reduction in glass transition temperature. Bioflex and Solanyl showed 5% and 2% reduction in molecular weight and experienced only 2% reduction in glass transition temperature. These findings highlight the recyclability potential of Bioflex and Solanyl over PLA and PHBV

    Design of Experiment to Determine the Effect of the Geometric Variables on Tensile Properties of Carbon Fiber Reinforced Polymer Composites

    No full text
    Carbon fiber reinforced polymers (CFRPs) are increasingly used in the aerospace industry because of their robust mechanical properties and strength to weight ratio. A significant drawback of CFRPs is their resistance to formability when drawing continuous CFRPs into complex shapes as it tends to bridge, resulting in various defects in the final product. However, CFRP made from Stretch Broken Carbon Fiber (SBCF) aims to solve this issue by demonstrating superior formability compared to conventional continuous CFRPs. To study and validate the performance of SBCF, a statistical design of the experiment was conducted using three different types of CFRPs in tow/tape form. Hexcel (Stamford, CT, USA) IM7-G continuous carbon fiber impregnated with Huntsman (The Woodlands, TX, USA) RDM 2019-053 resin system, Hexcel SBCF impregnated with RDM2019-053 resin, and Montana State University manufactured SBCF impregnated with Huntsman RDM 2019-053 resin were tested in a multitude of forming trials and the data were analyzed using a statistical model to evaluate the forming behavior of each fiber type. The results show that for continuous fiber CFRP tows forming, Fmax and Δmax do not show statistical significance based on temperature fluctuations; however, in SBCF CFRP tows forming, Fmax and Δmax is dominated by the temperature and geometry has a low statistical influence on the Fmax. The lower dependence on tool geometry at higher temperatures indicates possibly superior formability of MSU SBCF. Overall findings from this research help define practical testing methods to compare different CFRPs and provide a repeatable approach to creating a statistical model for measuring results from the formability trials
    corecore