30 research outputs found

    Elastic-to-plastic crossover below the peak effect in the vortex solid of YBa2Cu3O7 single crystals

    Full text link
    We report on transport and ac susceptibility studies below the peak effect in twinned YBa2Cu3O7 single crystals. We find that disorder generated at the peak effect can be partially inhibited by forcing vortices to move with an ac driving current. The vortex system can be additionally ordered below a well-defined temperature where elastic interactions between vortices overcome pinning-generated stress and a plastic to elastic crossover seems to occur. The combined effect of these two processes results in vortex structures with different mobilities that give place to history effects.Comment: 4 pages, 4 figures. Published in PRB Rapid Comm., February 1, 200

    Phase Behavior of Type-II Superconductors with Quenched Point Pinning Disorder: A Phenomenological Proposal

    Full text link
    A general phenomenology for phase behaviour in the mixed phase of type-II superconductors with weak point pinning disorder is outlined. We propose that the ``Bragg glass'' phase generically transforms via two separate thermodynamic phase transitions into a disordered liquid on increasing the temperature. The first transition is into a glassy phase, topologically disordered at the largest length scales; current evidence suggests that it lacks the long-ranged phase correlations expected of a ``vortex glass''. This phase has a significant degree of short-ranged translational order, unlike the disordered liquid, but no quasi-long range order, in contrast to the Bragg glass. This glassy phase, which we call a ``multi-domain glass'', is confined to a narrow sliver at intermediate fields, but broadens out both for much larger and much smaller field values. The multi-domain glass may be a ``hexatic glass''; alternatively, its glassy properties may originate in the replica symmetry breaking envisaged in recent theories of the structural glass transition. Estimates for translational correlation lengths in the multi-domain glass indicate that they can be far larger than the interline spacing for weak disorder, suggesting a plausible mechanism by which signals of a two-step transition can be obscured. Calculations of the Bragg glass-multi-domain glass and the multi-domain glass-disordered liquid phase boundaries are presented and compared to experimental data. We argue that these proposals provide a unified picture of the available experimental data on both high-Tc_c and low-Tc_c materials, simulations and current theoretical understanding.Comment: 70 pages, 9 postscript figures, modified title and minor changes in published versio
    corecore