73 research outputs found
Recommended from our members
Photoemission-based microelectronic devices.
The vast majority of modern microelectronic devices rely on carriers within semiconductors due to their integrability. Therefore, the performance of these devices is limited due to natural semiconductor properties such as band gap and electron velocity. Replacing the semiconductor channel in conventional microelectronic devices with a gas or vacuum channel may scale their speed, wavelength and power beyond what is available today. However, liberating electrons into gas/vacuum in a practical microelectronic device is quite challenging. It often requires heating, applying high voltages, or using lasers with short wavelengths or high powers. Here, we show that the interaction between an engineered resonant surface and a low-power infrared laser can cause enough photoemission via electron tunnelling to implement feasible microelectronic devices such as transistors, switches and modulators. The proposed photoemission-based devices benefit from the advantages of gas-plasma/vacuum electronic devices while preserving the integrability of semiconductor-based devices
Photoelectron Angular Distributions as a Probe of Anisotropic Electron-Ion Interactions
Expressions are given for atomic photoelectron angular distributions in LS coupling in which the role of anisotropic final state electron-ion interactions emerges explicitly. Calculations of photoelectron angular distributions for atomic sulfur are presented in which these anisotropic interactions produce clear deviations from the predictions of the Cooper-Zare model. Such effects are expected to be a general feature of photoelectron angular distributions for most open-shell atoms
Water as hazard and water as heritage: Report of the European Geosciences Union Topical Event in Rome, 13.-14. June 2016
Water as hazard and water as heritage“ was an international workshop which took place in the framework of the Spazi Aperti (Open spaces) event at the Accademia di Romania in Rome, an event engaging international fellows in the capital of Italy. The workshop was a winner in the selection of the European Geosciences Union co-sponsored meetings competition and as such participation was also multidisciplinary, from geosciences to archaeology, art history, urban planning and (landscape) architecture
Skunk River Review Fall 1997, Vol 9
https://openspace.dmacc.edu/skunkriver/1018/thumbnail.jp
Assessing plant performance in the Enviratron
Background: Assessing the impact of the environment on plant performance requires growing plants under controlled environmental conditions. Plant phenotypes are a product of genotype × environment (G × E), and the Enviratron at Iowa State University is a facility for testing under controlled conditions the effects of the environment on plant growth and development. Crop plants (including maize) can be grown to maturity in the Enviratron, and the performance of plants under different environmental conditions can be monitored 24 h per day, 7 days per week throughout the growth cycle.
Results: The Enviratron is an array of custom-designed plant growth chambers that simulate different environmental conditions coupled with precise sensor-based phenotypic measurements carried out by a robotic rover. The rover has workflow instructions to periodically visit plants growing in the different chambers where it measures various growth and physiological parameters. The rover consists of an unmanned ground vehicle, an industrial robotic arm and an array of sensors including RGB, visible and near infrared (VNIR) hyperspectral, thermal, and time-of-flight (ToF) cameras, laser profilometer and pulse-amplitude modulated (PAM) fluorometer. The sensors are autonomously positioned for detecting leaves in the plant canopy, collecting various physiological measurements based on computer vision algorithms and planning motion via “eye-in-hand” movement control of the robotic arm. In particular, the automated leaf probing function that allows the precise placement of sensor probes on leaf surfaces presents a unique advantage of the Enviratron system over other types of plant phenotyping systems.
Conclusions: The Enviratron offers a new level of control over plant growth parameters and optimizes positioning and timing of sensor-based phenotypic measurements. Plant phenotypes in the Enviratron are measured in situ—in that the rover takes sensors to the plants rather than moving plants to the sensors
Pairwise maximum entropy models for studying large biological systems: when they can and when they can't work
One of the most critical problems we face in the study of biological systems
is building accurate statistical descriptions of them. This problem has been
particularly challenging because biological systems typically contain large
numbers of interacting elements, which precludes the use of standard brute
force approaches. Recently, though, several groups have reported that there may
be an alternate strategy. The reports show that reliable statistical models can
be built without knowledge of all the interactions in a system; instead,
pairwise interactions can suffice. These findings, however, are based on the
analysis of small subsystems. Here we ask whether the observations will
generalize to systems of realistic size, that is, whether pairwise models will
provide reliable descriptions of true biological systems. Our results show
that, in most cases, they will not. The reason is that there is a crossover in
the predictive power of pairwise models: If the size of the subsystem is below
the crossover point, then the results have no predictive power for large
systems. If the size is above the crossover point, the results do have
predictive power. This work thus provides a general framework for determining
the extent to which pairwise models can be used to predict the behavior of
whole biological systems. Applied to neural data, the size of most systems
studied so far is below the crossover point
Non-invasive diagnostic tests for Helicobacter pylori infection
BACKGROUND: Helicobacter pylori (H pylori) infection has been implicated in a number of malignancies and non-malignant conditions including peptic ulcers, non-ulcer dyspepsia, recurrent peptic ulcer bleeding, unexplained iron deficiency anaemia, idiopathic thrombocytopaenia purpura, and colorectal adenomas. The confirmatory diagnosis of H pylori is by endoscopic biopsy, followed by histopathological examination using haemotoxylin and eosin (H & E) stain or special stains such as Giemsa stain and Warthin-Starry stain. Special stains are more accurate than H & E stain. There is significant uncertainty about the diagnostic accuracy of non-invasive tests for diagnosis of H pylori. OBJECTIVES: To compare the diagnostic accuracy of urea breath test, serology, and stool antigen test, used alone or in combination, for diagnosis of H pylori infection in symptomatic and asymptomatic people, so that eradication therapy for H pylori can be started. SEARCH METHODS: We searched MEDLINE, Embase, the Science Citation Index and the National Institute for Health Research Health Technology Assessment Database on 4 March 2016. We screened references in the included studies to identify additional studies. We also conducted citation searches of relevant studies, most recently on 4 December 2016. We did not restrict studies by language or publication status, or whether data were collected prospectively or retrospectively. SELECTION CRITERIA: We included diagnostic accuracy studies that evaluated at least one of the index tests (urea breath test using isotopes such as13C or14C, serology and stool antigen test) against the reference standard (histopathological examination using H & E stain, special stains or immunohistochemical stain) in people suspected of having H pylori infection. DATA COLLECTION AND ANALYSIS: Two review authors independently screened the references to identify relevant studies and independently extracted data. We assessed the methodological quality of studies using the QUADAS-2 tool. We performed meta-analysis by using the hierarchical summary receiver operating characteristic (HSROC) model to estimate and compare SROC curves. Where appropriate, we used bivariate or univariate logistic regression models to estimate summary sensitivities and specificities. MAIN RESULTS: We included 101 studies involving 11,003 participants, of which 5839 participants (53.1%) had H pylori infection. The prevalence of H pylori infection in the studies ranged from 15.2% to 94.7%, with a median prevalence of 53.7% (interquartile range 42.0% to 66.5%). Most of the studies (57%) included participants with dyspepsia and 53 studies excluded participants who recently had proton pump inhibitors or antibiotics.There was at least an unclear risk of bias or unclear applicability concern for each study.Of the 101 studies, 15 compared the accuracy of two index tests and two studies compared the accuracy of three index tests. Thirty-four studies (4242 participants) evaluated serology; 29 studies (2988 participants) evaluated stool antigen test; 34 studies (3139 participants) evaluated urea breath test-13C; 21 studies (1810 participants) evaluated urea breath test-14C; and two studies (127 participants) evaluated urea breath test but did not report the isotope used. The thresholds used to define test positivity and the staining techniques used for histopathological examination (reference standard) varied between studies. Due to sparse data for each threshold reported, it was not possible to identify the best threshold for each test.Using data from 99 studies in an indirect test comparison, there was statistical evidence of a difference in diagnostic accuracy between urea breath test-13C, urea breath test-14C, serology and stool antigen test (P = 0.024). The diagnostic odds ratios for urea breath test-13C, urea breath test-14C, serology, and stool antigen test were 153 (95% confidence interval (CI) 73.7 to 316), 105 (95% CI 74.0 to 150), 47.4 (95% CI 25.5 to 88.1) and 45.1 (95% CI 24.2 to 84.1). The sensitivity (95% CI) estimated at a fixed specificity of 0.90 (median from studies across the four tests), was 0.94 (95% CI 0.89 to 0.97) for urea breath test-13C, 0.92 (95% CI 0.89 to 0.94) for urea breath test-14C, 0.84 (95% CI 0.74 to 0.91) for serology, and 0.83 (95% CI 0.73 to 0.90) for stool antigen test. This implies that on average, given a specificity of 0.90 and prevalence of 53.7% (median specificity and prevalence in the studies), out of 1000 people tested for H pylori infection, there will be 46 false positives (people without H pylori infection who will be diagnosed as having H pylori infection). In this hypothetical cohort, urea breath test-13C, urea breath test-14C, serology, and stool antigen test will give 30 (95% CI 15 to 58), 42 (95% CI 30 to 58), 86 (95% CI 50 to 140), and 89 (95% CI 52 to 146) false negatives respectively (people with H pylori infection for whom the diagnosis of H pylori will be missed).Direct comparisons were based on few head-to-head studies. The ratios of diagnostic odds ratios (DORs) were 0.68 (95% CI 0.12 to 3.70; P = 0.56) for urea breath test-13C versus serology (seven studies), and 0.88 (95% CI 0.14 to 5.56; P = 0.84) for urea breath test-13C versus stool antigen test (seven studies). The 95% CIs of these estimates overlap with those of the ratios of DORs from the indirect comparison. Data were limited or unavailable for meta-analysis of other direct comparisons. AUTHORS' CONCLUSIONS: In people without a history of gastrectomy and those who have not recently had antibiotics or proton ,pump inhibitors, urea breath tests had high diagnostic accuracy while serology and stool antigen tests were less accurate for diagnosis of Helicobacter pylori infection.This is based on an indirect test comparison (with potential for bias due to confounding), as evidence from direct comparisons was limited or unavailable. The thresholds used for these tests were highly variable and we were unable to identify specific thresholds that might be useful in clinical practice.We need further comparative studies of high methodological quality to obtain more reliable evidence of relative accuracy between the tests. Such studies should be conducted prospectively in a representative spectrum of participants and clearly reported to ensure low risk of bias. Most importantly, studies should prespecify and clearly report thresholds used, and should avoid inappropriate exclusions
- …