111 research outputs found

    Dynamical Breakdown of Symmetry in a (2+1) Dimensional Model Containing the Chern-Simons Field

    Full text link
    We study the vacuum stability of a model of massless scalar and fermionic fields minimally coupled to a Chern-Simons field. The classical Lagrangian only involves dimensionless parameters, and the model can be thought as a (2+1) dimensional analog of the Coleman-Weinberg model. By calculating the effective potential, we show that dynamical symmetry breakdown occurs in the two-loop approximation. The vacuum becomes asymmetric and mass generation, for the boson and fermion fields takes place. Renormalization group arguments are used to clarify some aspects of the solution.Comment: Minor modifications in the text and figure

    Operator Regularization and Large Noncommutative Chern Simons Theory

    Full text link
    We examine noncommutative Chern Simons theory using operator regularization. Both the zeta-function and the eta-function are needed to determine one loop effects. The contributions to these functions coming from the two point function is evaluated. The U(N) noncommutative model smoothly reduces to the SU(N) commutative model as the noncommutative parameter theta_{mu nu} vanishes

    Accelerated Universe from Gravity Leaking to Extra Dimensions

    Get PDF
    We discuss the idea that the accelerated Universe could be the result of the gravitational leakage into extra dimensions on Hubble distances rather than the consequence of non-zero cosmological constant.Comment: 20 pages, 6 figure

    Two-Loop Quantum Corrections of Scalar QED with Non-Minimal Chern-Simons Coupling

    Get PDF
    We investigate two-loop quantum corrections to non-minimally coupled Maxwell-Chern-Simons theory. The non-minimal gauge interaction represents the magnetic moment interaction between the charged scalar and the electromagnetic field. We show that the one-loop renormalizability of the theory found in previous work does not survive to the two-loop level. However, with an appropriate choice of the non-minimal coupling constant, it is possible to renormalize the two-loop effective potential and hence render it potentially useful for a detailed analysis of spontaneous symmetry breaking induced by radiative corrections.Comment: 29 pages, including 21 figures. One author added, some formulae corrected and references adde

    Off-Diagonal Elements of the DeWitt Expansion from the Quantum Mechanical Path Integral

    Full text link
    The DeWitt expansion of the matrix element M_{xy} = \left\langle x \right| \exp -[\case{1}{2} (p-A)^2 + V]t \left| y \right\rangle, (p=i)(p=-i\partial) in powers of tt can be made in a number of ways. For x=yx=y (the case of interest when doing one-loop calculations) numerous approaches have been employed to determine this expansion to very high order; when xyx \neq y (relevant for doing calculations beyond one-loop) there appear to be but two examples of performing the DeWitt expansion. In this paper we compute the off-diagonal elements of the DeWitt expansion coefficients using the Fock-Schwinger gauge. Our technique is based on representing MxyM_{xy} by a quantum mechanical path integral. We also generalize our method to the case of curved space, allowing us to determine the DeWitt expansion of \tilde M_{xy} = \langle x| \exp \case{1}{2} [\case{1}{\sqrt {g}} (\partial_\mu - i A_\mu)g^{\mu\nu}{\sqrt{g}}(\partial_\nu - i A_\nu) ] t| y \rangle by use of normal coordinates. By comparison with results for the DeWitt expansion of this matrix element obtained by the iterative solution of the diffusion equation, the relative merit of different approaches to the representation of M~xy\tilde M_{xy} as a quantum mechanical path integral can be assessed. Furthermore, the exact dependence of M~xy\tilde M_{xy} on some geometric scalars can be determined. In two appendices, we discuss boundary effects in the one-dimensional quantum mechanical path integral, and the curved space generalization of the Fock-Schwinger gauge.Comment: 16pp, REVTeX. One additional appendix concerning end-point effects for finite proper-time intervals; inclusion of these effects seem to make our results consistent with those from explicit heat-kernel method

    Spherically symmetric spacetimes in massive gravity

    Full text link
    We explore spherically symmetric stationary solutions, generated by ``stars'' with regular interiors, in purely massive gravity. We reexamine the claim that the resummation of non-linear effects can cure, in a domain near the source, the discontinuity exhibited by the linearized theory as the mass m of the graviton tends to zero. First, we find analytical difficulties with this claim, which appears not to be robust under slight changes in the form of the mass term. Second, by numerically exploring the inward continuation of the class of asymptotically flat solutions, we find that, when m is ``small'', they all end up in a singularity at a finite radius, well outside the source, instead of joining some conjectured ``continuous'' solution near the source. We reopen, however, the possibility of reconciling massive gravity with phenomenology by exhibiting a special class of solutions, with ``spontaneous symmetry breaking'' features, which are close, near the source, to general relativistic solutions and asymptote, for large radii, a de Sitter solution of curvature ~m^2.Comment: 57 pages, references addde

    Mass and Gauge Invariance IV (Holography for the Karch-Randall Model)

    Get PDF
    We argue that the Karch-Randall compactification is holographically dual to a 4-d conformal field theory coupled to gravity on Anti de Sitter space. Using this interpretation we recover the mass spectrum of the model. In particular, we find no massless spin-2 states. By giving a purely 4-d interpretation to the compactification we make clear that it represents the first example of a local 4-d field theory in which general covariance does not imply the existence of a massless graviton. We also discuss some variations of the Karch-Randall model discussed in the literature, and we examine whether its properties are generic to all conformal field theory.Comment: 26 pages, uses package latexsym. Note added in proo

    A Massive Renormalizable Abelian Gauge Theory in 2+1 Dimensions

    Get PDF
    The standard formulation of a massive Abelian vector field in 2+12+1 dimensions involves a Maxwell kinetic term plus a Chern-Simons mass term; in its place we consider a Chern-Simons kinetic term plus a Stuekelberg mass term. In this latter model, we still have a massive vector field, but now the interaction with a charged spinor field is renormalizable (as opposed to super renormalizable). By choosing an appropriate gauge fixing term, the Stuekelberg auxiliary scalar field decouples from the vector field. The one-loop spinor self energy is computed using operator regularization, a technique which respects the three dimensional character of the antisymmetric tensor ϵαβγ\epsilon_{\alpha\beta\gamma}. This method is used to evaluate the vector self energy to two-loop order; it is found to vanish showing that the beta function is zero to two-loop order. The canonical structure of the model is examined using the Dirac constraint formalism.Comment: LaTeX, 17 pages, expanded reference list and discussion of relationship to previous wor

    Nonperturbative Continuity in Graviton Mass versus Perturbative Discontinuity

    Get PDF
    We address the question whether a graviton could have a small nonzero mass. The issue is subtle for two reasons: there is a discontinuity in the mass in the lowest tree-level approximation, and, moreover, the nonlinear four-dimensional theory of a massive graviton is not defined unambiguously. First, we reiterate the old argument that for the vanishing graviton mass the lowest tree-level approximation breaks down since the higher order corrections are singular in the graviton mass. However, there exist nonperturbative solutions which correspond to the summation of the singular terms and these solutions are continuous in the graviton mass. Furthermore, we study a completely nonlinear and generally covariant five-dimensional model which mimics the properties of the four-dimensional theory of massive gravity. We show that the exact solutions of the model are continuous in the mass, yet the perturbative expansion exhibits the discontinuity in the leading order and the singularities in higher orders as in the four-dimensional case. Based on exact cosmological solutions of the model we argue that the helicity-zero graviton state which is responsible for the perturbative discontinuity decouples from the matter in the limit of vanishing graviton mass in the full classical theory.Comment: Phys Rev D version, 21 pages, 1 figure, a reference and some clarifications are added, typos correcte

    Graviton and scalar propagations on AdS(4) space in f(R) gravities

    Full text link
    We investigate propagations of graviton and additional scalar on four-dimensional anti de Sitter (AdS4_4) space using f(R)f(R) gravity models with external sources. It is shown that there is the van Dam-Veltman-Zakharov (vDVZ) discontinuity in f(R)f(R) gravity models because f(R)f(R) gravity implies GR with additional scalar. This indicates a difference between general relativity and f(R)f(R) gravity clearly.Comment: 11 pages, no figures, version to appear in EPJ
    corecore