43 research outputs found

    Optimal path and gait generations simultaneously of a six-legged robot using a GA-Fuzzy approach

    Get PDF
    This paper describes a new method for generating optimal path and gait simultaneously of a six-legged robot using a combined GA-fuzzy approach. The problem of combined path and gait generations involves three steps, namely determination of vehicle's trajectory, foothold selection and design of a sequence of leg movements. It is a complicated task and no single traditional approach is found to be successful in handling this problem. Moreover, the traditional approaches do not consider optimization issues, yet they are computationally expensive. Thus, the generated path and gaits may not be optimal in any sense. To solve such problems optimally, there is still a need for the development of an efficient and computationally faster algorithm. In the proposed genetic-fuzzy approach, optimal path and gaits are generated by using fuzzy logic controllers (FLCs) and genetic algorithms (GAs) are used to find optimized FLCs. The optimization is done off-line on a number of training scenarios and optimal FLCs are found. The hexapod can then use these GA-tuned FLCs to navigate in test-case scenarios

    Design of a genetic-fuzzy system for planning optimal path and gait simultaneously of a six-legged robot

    Get PDF
    This paper describes a genetic-fuzzy system used for generating optimal path and gait simultaneously of a six-legged robot. No single traditional approach is found to be successful in handling this complicated task. Moreover, the conventional methods are computationally expensive and the generated path and gaits may not be optimal in any sense. Thus, there is still a need for the development of an efficient and computationally faster algorithm for solving this problem. In the proposed algorithm, optimal path and gaits are generated by fuzzy logic controllers (FLCs) and optimized FLCs are found by genetic algorithms (GAs). Design of an optimized FLC (only rule base optimization) involves the problem of dealing with discrete variables and GA is an efficient tool for this purpose. The actual optimization is done off-line and the hexapod can use these GA-tuned FLCs to navigate in real-world scenarios, in an optimal sense

    A Comparative Study of Fuzzy C-Means Algorithm and Entropy-Based Fuzzy Clustering Algorithms

    Get PDF
    Fuzzy clustering is useful to mine complex and multi-dimensional data sets, where the members have partial or fuzzy relations. Among the various developed techniques, fuzzy-C-means (FCM) algorithm is the most popular one, where a piece of data has partial membership with each of the pre-defined cluster centers. Moreover, in FCM, the cluster centers are virtual, that is, they are chosen at random and thus might be out of the data set. The cluster centers and membership values of the data points with them are updated through some iterations. On the other hand, entropy-based fuzzy clustering (EFC) algorithm works based on a similarity-threshold value. Contrary to FCM, in EFC, the cluster centers are real, that is, they are chosen from the data points. In the present paper, the performances of these algorithms have been compared on four data sets, such as IRIS, WINES, OLITOS and psychosis (collected with the help of forty doctors), in terms of the quality of the clusters (that is, discrepancy factor, compactness, distinctness) obtained and their computational time. Moreover, the best set of clusters has been mapped into 2-D for visualization using a self-organizing map (SOM)

    Path planning for cooperating robots using a GA-fuzzy approach

    No full text

    Optimal turning gait of a six-legged robot using a GA-fuzzy approach

    No full text
    This paper describes a new method for generating the turning-gait of a six-legged robot using a combined genetic algorithm (GA)-Fuzzy approach. The main drawback of the traditional methods of gait generation is their high computational load. Thus, there is still a need for the development of a computationally tractable algorithm that can be implemented online to generate stable gait of a multilegged robot. In the proposed genetic-fuzzy system, the fuzzy logic controllers (FLCs) are used to generate the stable gait of a hexapod and a GA is used to improve the performance of the FLCs. The effectiveness of the proposed algorithm is tested on a number of turning-gait generation problems of a hexapod that involve translation as well as rotation of the vehicle. The hexapod will have to take a sharp circular turn (either clockwise or counter-clockwise) with minimum number of ground legs having the maximum average kinematic margin. Moreover, the stability margin should lie within a certain range to ensure static stability of the vehicle. Each leg of a six-legged robot is controlled by a separate FLC and the performance of the controllers is improved by using a GA. It is to be noted that the actual optimization is done off-line and the hexapod can use these optimized FLCs to navigate in real-world scenarios. As an FLC is computationally less expensive, the proposed algorithm will be faster compared with the traditional methods of gait-generation, which include both graphical as well as analytical methods. The GA-tuned FLCs are found to perform better than the author-defined FLCs
    corecore