212 research outputs found

    Photon temporal modes: a complete framework for quantum information science

    Full text link
    Field-orthogonal temporal modes of photonic quantum states provide a new framework for quantum information science (QIS). They intrinsically span a high-dimensional Hilbert space and lend themselves to integration into existing single-mode fiber communication networks. We show that the three main requirements to construct a valid framework for QIS -- the controlled generation of resource states, the targeted and highly efficient manipulation of temporal modes and their efficient detection -- can be fulfilled with current technology. We suggest implementations of diverse QIS applications based on this complete set of building blocks.Comment: 17 pages, 13 figure

    Controls of dimethyl sulphide in the Bay of Bengal during BOBMEX-Pilot cruise 1998

    Get PDF
    The air-sea exchange is one of the main mechanisms maintaining the abundances of trace gases in the atmosphere. Some of these, such as carbon dioxide and dimethyl sulphide (DMS), will have a bearing on the atmospheric heat budget. While the former facilitates the trapping of radiation (greenhouse effect) the latter works in the opposite direction through reflectance of radiation back into space by sulphate aerosols that form from oxidation of DMS in atmosphere. Here we report on the first measurements made on DMS in the Bay of Bengal and the factors regulating its abundance in seawater. Phytoplankton alone does not seem to control the extent of DMS concentrations. We find that changes in salinity could effectively regulate the extent of DMSP production by marine phytoplankton. In addition, we provide the first ever evidence to the occurrence of DMS precursor, DMSP, in marine aerosols collected in the boundary layer. This suggests that the marine aerosol transport of DMSP will supplement DMS gaseous evasion in maintaining the atmospheric non-sea salt sulphur budget

    Abundance and relationship of bacteria with transparent exopolymer particles during the 1996 summer monsoon in the Arabian Sea

    Get PDF
    Bacterial abundance and production, numbers, sizes and concentrations of transparent exopolymer particles (TEP) and total organic carbon (TOC) were measured during the 1996 summer monsoon to understand the relationship between TEP, the most labile particulate organic carbon, and bacteria. While high regional variability in the vertical distribution of TOC was discernible, TEP concentrations were high in surface waters at 18-20°N along 64°E with concentrations well over 25 mg alginic acid equivalents I-1 due to upwelling induced productivity. Their concentrations decreased with depth and were lower between 200 and 500 m. Bacterial concentrations were up to 1.99 × 108 I-1 in the surface waters and decreased by an order of magnitude or more at depths below 500 m. A better relationship has been found between bacterial abundance and concentrations of TEP than between bacteria and TOC, indicating that bacterial metabolism is fueled by availability of TEP in the Arabian Sea. Assuming a carbon assimilation of 33%, bacterial carbon demand (BCD) is estimated to be 1.017 to 4.035 gCm-2 d-1 in the surface waters. The observed TEP concentrations appear to be sufficient in meeting the surface and subsurface BCD in the northern Arabian Sea

    Physical control of primary productivity on a seasonal scale in central and eastern Arabian Sea

    Get PDF
    Using in situ data collected during 1992-1997, under the Indian programme of Joint Global Ocean Flux Study (JGOFS), we show that the biological productivity of the Arabian Sea is tightly coupled to the physical forcing mediated through nutrient availability. The Arabian Sea becomes productive in summer not only along the coastal regions of Somalia, Arabia and southern parts of the west coast of India due to coastal upwelling but also in the open waters of the central region. The open waters in the north are fertilized by a combination of divergence driven by cyclonic wind stress curl to the north of the Findlater Jet and lateral advection of nutrient-rich upwelled waters from Arabia. Productivity in the southern part of the central Arabian Sea, on the other hand, is driven by advection from the Somalia upwelling. Surface cooling and convection resulting from reduced solar radiation and increased evaporation make the northern region productive in winter. During both spring and fall inter-monsoons, this sea remains warm and stratified with low production as surface waters are oligotrophic. Inter-annual variability in physical forcing during winter resulted in one-and-a-half times higher production in 1997 than in 1995

    Effect of contextual factors of training on training effectiveness study in Kedah State Development Corporation, Kedah Malaysia

    Get PDF
    Employee training has been a matter of concern and attention by many business fields nowadays. Organizations realize that employee training is an essential element to increase efficiency of job performance and keep their business running, as competitions are getting more intense. Contextualizing this topic to Malaysian industrial scenario so many enterprise implemented various training programs to enhance their employees in skill oriented performance. However, on the contrary, it observed that the training environment still exist shortages in enterprises today. For instance, lack of knowledge of training programs, lack of training need assessment, lack of manpower to plan and design training and development programs, resources, infrastructure, skilled trainers, etc. This study by combining theoretical and empirical research tries to find out the influence of contextual factors on training effectiveness by incorporating variables like work environment, training environment, types of training and personal characteristics of trainees in Kedah State Development Corporation (KSDC) which is the parent company under BDB Company

    Theory of noise suppression in {\Lambda}-type quantum memories by means of a cavity

    Full text link
    Quantum memories, capable of storing single photons or other quantum states of light, to be retrieved on-demand, offer a route to large-scale quantum information processing with light. A promising class of memories is based on far-off-resonant Raman absorption in ensembles of Λ\Lambda-type atoms. However at room temperature these systems exhibit unwanted four-wave mixing, which is prohibitive for applications at the single-photon level. Here we show how this noise can be suppressed by placing the storage medium inside a moderate-finesse optical cavity, thereby removing the main roadblock hindering this approach to quantum memory.Comment: 10 pages, 3 figures. This paper provides the theoretical background to our recent experimental demonstration of noise suppression in a cavity-enhanced Raman-type memory ( arXiv:1510.04625 ). See also the related paper arXiv:1511.05448, which describes numerical modelling of an atom-filled cavity. Comments welcom
    • …
    corecore