7 research outputs found
Medicinal mushrooms in prevention and control of diabetes mellitus
International audienceDiabetes mellitus is a life-threatening chronic metabolic disease caused by lack of insulin and/or insulin dysfunction, characterized by high levels of glucose in the blood (hyperglycemia). Millions worldwide suffer from diabetes and its complications. Significantly, it has been recognized that type 2 diabetes is an important preventable disease and can be avoided or delayed by lifestyle intervention. Presently, there are many chemical and biochemical hypoglycemic agents (synthetic drugs), that are used in treating diabetes and are effective in controlling hyperglycemia. However, as they may have harmful side-effects and fail to significantly alter the course of diabetic complications, natural anti-diabetic drugs from medicinal plants have attracted a great deal of attention. Medicinal mushrooms have been valued as a traditional source of natural bioactive compounds over many centuries and have been targeted as potential hypoglycemic and anti-diabetic agents. Bioactive metabolites including polysaccharides, proteins, dietary fibres, and many other biomolecules isolated from medicinal mushrooms and their cultured mycelia have been shownto be successful in diabetes treatment as biological antihyperglycemic agents. In this review we discuss the biological nature of diabetes and, in particular, explore some promising mushrooms that have experimental anti-diabetic properties, preventing or reducing the development of diabetes mellitus. The importance of medicinal mushrooms as agents of medical nutrition therapy and how their metabolites can be used as supportive candidates for prevention and control of diabetes is explored. Future prospects for this field of study and the difficulties and constraints that might affect the development of rational drug products from medicinal mushrooms are discussed
Medicinal mushrooms in supportive cancer therapies: an approach to anti-cancer effects and putative mechanisms of action
International audienceMedicinal mushrooms have been valued as natural sources of bioactive compounds since times immemorial and have been recognized as potential immunomodulating and anti-cancer agents. Their consumption has consistently been shown to have beneficial effects on human health. Cancer is a generic term for several types of diseases that can be chronic and are responsible for a large number of deaths worldwide. Although there has been considerable progress in modern cancer therapy research, difficulties in understanding the molecular behavior of various types of cancers and the numerous side effects experienced by patients from treatments means that this whole subject area is still problematic. Thus, biological immunotherapy using natural bioactive compounds as supportive treatments in conventional cancer therapies has become in vogue. Bioactive metabolites isolated from medicinal mushrooms have shown potential successes in cancer treatment as biologicalimmunotherapeutic agents that stimulate the immune system against cancer cells. They also act as an effective source of anti-cancer agents, capable of interfering with cellular signal transduction pathways linked to cancer development and progression. In this review we compile available data on the characteristics of medicinal mushrooms that appear to be particularly effective as biological immunotherapeuticagents. Major consideration is given to biological constituents and the putative mechanisms of action by which bioactive compounds act on the human body. Consideration is also given to the benefits that have been claimed for the use of mushrooms in treating cancer and the future prospects of using medicinal mushrooms as potent supportive candidate bioagents for treatment of cancers is discussed
Colletotrichum Species Causing Anthracnose of Citrus in Australia
Colletotrichum spp. are important pathogens of citrus that cause dieback of branches and postharvest disease. Globally, several species of Colletotrichum have been identified as causing anthracnose of citrus. One hundred and sixty-eight Colletotrichum isolates were collected from anthracnose symptoms on citrus stems, leaves, and fruit from Victoria, New South Wales, and Queensland, and from State herbaria in Australia. Colletotrichum australianum sp. nov., C. fructicola, C. gloeosporioides, C. karstii, C. siamense, and C. theobromicola were identified using multi-gene phylogenetic analyses based on seven genomic loci (ITS, gapdh, act, tub2, ApMat, gs, and chs-1) in the gloeosporioides complex and five genomic loci (ITS, tub2, act, chs-1, and his3) in the boninense complex, as well as morphological characters. Several isolates pathogenic to chili (Capsicum annuum), previously identified as C. queenslandicum, formed a clade with the citrus isolates described here as C. australianum sp. nov. The spore shape and culture characteristics of the chili and citrus isolates of C. australianum were similar and differed from those of C. queenslandicum. This is the first report of C. theobromicola isolated from citrus and the first detection of C. karstii and C. siamense associated with citrus anthracnose in Australia
<i>Colletotrichum</i> Species Causing Anthracnose of Citrus in Australia
Colletotrichum spp. are important pathogens of citrus that cause dieback of branches and postharvest disease. Globally, several species of Colletotrichum have been identified as causing anthracnose of citrus. One hundred and sixty-eight Colletotrichum isolates were collected from anthracnose symptoms on citrus stems, leaves, and fruit from Victoria, New South Wales, and Queensland, and from State herbaria in Australia. Colletotrichum australianum sp. nov., C. fructicola, C. gloeosporioides, C. karstii, C. siamense, and C. theobromicola were identified using multi-gene phylogenetic analyses based on seven genomic loci (ITS, gapdh, act, tub2, ApMat, gs, and chs-1) in the gloeosporioides complex and five genomic loci (ITS, tub2, act, chs-1, and his3) in the boninense complex, as well as morphological characters. Several isolates pathogenic to chili (Capsicum annuum), previously identified as C. queenslandicum, formed a clade with the citrus isolates described here as C. australianum sp. nov. The spore shape and culture characteristics of the chili and citrus isolates of C. australianum were similar and differed from those of C. queenslandicum. This is the first report of C. theobromicola isolated from citrus and the first detection of C. karstii and C. siamense associated with citrus anthracnose in Australia