7,748 research outputs found

    Ultrasonic distance detection for a closed-loop spinal cord stimulation system

    Get PDF
    When stimulating the spinal cord at a constant strength, the current density in the spinal cord and thus the effects on chronic, intractable pain and vascular insufficiency will change with body position, due to the varying separation of the spinal cord and the stimulating electrode. The current density in the spinal cord has to remain between the perception and discomfort threshold (stimulation window) for a good therapeutic effect, i.e. that the patient does not suffer from pain. The stimulation window is very small. In current SCS systems the stimulus applied to the electrode is set at a constant value. A major improvement could be achieved when the distance between stimulation electrode and spinal cord could be measured and used to control the stimulus amplitude in a closed-loop system. An ultrasonic piezoelectric transducer was chosen to measure the distance between the electrode and the spinal cor

    On the relation between adjacent inviscid cell type solutions to the rotating-disk equations

    Get PDF
    Over a large range of the axial coordinate a typical higher-branch solution of the rotating-disk equations consists of a chain of inviscid cells separated from each other by viscous interlayers. In this paper the leading-order relation between two adjacent cells will be established by matched asymptotic expansions for general values of the parameter appearing in the equations. It is found that the relation between the solutions in the two cells crucially depends on the behaviour of the tangential velocity in the viscous interlayer. The results of the theory are compared with accurate numerical solutions and good agreement is obtained

    Metastable liquid-liquid and solid-liquid phase boundaries in polymer-solvent-nonsolvent systems

    Get PDF
    In general liquid-liquid demixing processes are responsible for the porous morphology of membranes obtained by immersion precipitation. For rapidly crystallizing polymers, solid-liquid demixing processes also generate porous morphologies. In this study, the interference of both phase transitions has been analyzed theoretically using the Flory-Huggins theory for ternary polymer solutions. It is demonstrated that four main thermodynamic and kinetic parameters are important for the structure formation in solution: the thermodynamic driving force for crystallization, the ratio of the molar volumes of the solvent and the nonsolvent, the polymer-solvent interaction parameter, and the rate of crystallization of the polymer compared to the rate of solvent-nonsolvent exchange. An analysis of the relevance of each of these parameters for the membrane morphology is presented

    Phase separation processes in polymer solutions in relation to membrane formation

    Get PDF
    This review covers new experimental and theoretical physical research related to the formation of polymeric membranes by phase separation of a polymer solution, and to the morphology of these membranes. Two main phase separation processes for polymeric membrane formation are discussed: thermally induced phase separation and immersion precipitation. Special attention is paid to phase transitions like liquid-liquid demixing, crystallization, gelation, and vitrification, and their relation to membrane morphology. In addition, the mass transfer processes involved in immersion precipitation, and their influence on membrane morphology are discussed

    Block copolymers of poly(L-lactide) and poly(ε-caprolactone) or poly(ethylene glycol) prepared by reactive extrusion

    Get PDF
    Blends of poly(L-lactide) (PLLA) and poly(-caprolactone) (PCL) were prepared in a co-rotating twin screw miniextruder (40 rpm, 200°). It was attempted to prepare multiblock copolymers by allowing a controlled number of transesterification reactions. Various cat-alysts (n-Bu3SnOMe, Sn(Oct)2, Ti(OBu)4, Y(Oct)3, para-toluene sulphonic acid) were introduced to promote these transesterification reactions. However, PLLA degradation by ring-closing depolymerization was the dominant reaction in every case. Alternatively, after showing that L-lactide can be conveniently polymerized in the extruder, L-lactide and hy-droxyl functionalized prepolymers of PCL or poly(ethylene glycol) (PEG) were fed to the extruder in the presence of stannous octoate. Monomer conversions of over 90% and effective transformation of all hydroxyl end groups present were generally reached. Di-and triblock copolymers could be prepared in this way with characteristics very similar to polymers prepared in a batch-type process, but with considerably reduced reaction times in a fashion, which is, in principle, scaleable to a continuous process for the production of such block copolymers

    Non-Gaussian Dynamics in Smectic Liquid Crystals of Parallel Hard Rods

    Full text link
    Using computer simulations, we studied the diffusion and structural relaxation in equilibrium smectic liquid crystal bulk phases of parallel hard spherocylinders. These systems exhibit a non-Gaussian layer-to-layer diffusion due to the presence of periodic barriers and transient cages, and show remarkable similarities with the behavior of out-of-equilibrium supercooled liquids. We detect a very slow inter-layer relaxation dynamics over the whole density range of the stable smectic phase which spans a time interval of four time decades. The intrinsic nature of the layered structure yields a hopping-type diffusion which becomes more heterogeneous for higher packing fractions. In contrast, the in-layer dynamics is typical of a dense fluid with a relatively fast decay. Our results on the dynamic behavior agree well with that observed in systems of freely rotating hard rods, but differ quantitavely, as the height of the periodic barriers reduces to zero at the nematic-smectic transition for aligned rods, while it remains finite for freely rotating rods.Comment: 15 pages, 7 figure

    A morphological study of membranes obtained from the systems polylactide-dioxane-methanol, polylactide-dioxane-water and polylactide-N-methyl pyrrolidone-water

    Get PDF
    The influence of liquid-liquid demixing, solid-liquid demixing, and vitrification on the membrane morphologies obtained from several polylactide-solvent-nonsolvent systems has been investigated. The polymers investigated were the semicrystalline poly-L-lactide (PLLA) and the amorphous poly-DL-lactide (PDLLA). The solvent-nonsolvent systems used were dioxane-water, N-methyl pyrrolidone-water and dioxane-methanol. For each of these systems it was attempted to relate the membrane morphology to the ternary phase diagram at 25°C. It was demonstrated that for the amorphous poly-DL-lactide the intersection of a glass transition and a liquid-liquid miscibility gap in the phase diagram was a prerequisite for the formation of stable membrane structures. For the semicrystalline PLLA a wide variety of morphologies could be obtained ranging from cellular to spherulitical structures. For membrane-forming combinations that show delayed demixing, trends expected on the basis of phase diagrams were in reasonable agreement with the observed membrane morphologies. Only for the rapidly precipitating system PLLA-N-methyl pyrrolidone-water were structures due to liquid-liquid demixing obtained when structures due to solid-liquid demixing were expected. Probably, rapid precipitation conditions promote solid-liquid demixing over liquid-liquid demixing, because the activation energy necessary for liquid-liquid demixing is lower than that for crystallization

    Inference of the Russian drug community from one of the largest social networks in the Russian Federation

    Full text link
    The criminal nature of narcotics complicates the direct assessment of a drug community, while having a good understanding of the type of people drawn or currently using drugs is vital for finding effective intervening strategies. Especially for the Russian Federation this is of immediate concern given the dramatic increase it has seen in drug abuse since the fall of the Soviet Union in the early nineties. Using unique data from the Russian social network 'LiveJournal' with over 39 million registered users worldwide, we were able for the first time to identify the on-line drug community by context sensitive text mining of the users' blogs using a dictionary of known drug-related official and 'slang' terminology. By comparing the interests of the users that most actively spread information on narcotics over the network with the interests of the individuals outside the on-line drug community, we found that the 'average' drug user in the Russian Federation is generally mostly interested in topics such as Russian rock, non-traditional medicine, UFOs, Buddhism, yoga and the occult. We identify three distinct scale-free sub-networks of users which can be uniquely classified as being either 'infectious', 'susceptible' or 'immune'.Comment: 12 pages, 11 figure

    Phase transitions during membrane formation of polylactides. I. A morphological study of membranes obtained from the system polylactide-chloroform-methanol

    Get PDF
    The influence of solid-liquid demixing, liquid-liquid demixing and vitrification on the morphology of polylactide membranes has been investigated. To study the effects of crystallization of polylactides on the membrane and morphology, polylactides of varying stereoregularity were used. The polymers applied were poly--lactide (PLLA) and copolymers with different molar ratios of -lactide and -lactide [poly-L95/D5-lactide (PLA95), poly-L80/D20-lactide (PLA80) and poly-L50/D50-lactide (PDLLA)]. Solutions of polylactides in chloroform cast on a glass plate were immersed in methanol. From solutions containing the slowly crystallizing PLA80 or uncrystallizable PDLLA porous membranes were obtained if the phase separated system was removed from the nonsolvent bath within a few hours after immersion. After longer equilibration times in methanol the structure collapsed. The swelling in the nonsolvent methanol was too high to allow stabilization of the liquid-liquid demixed structure by vitrification. Stable membranes were easily obtained with more rapidly crystallizing polymers like PLLA. Casting solutions with low PLLA concentrations gave membranes with a cellular morphology due to liquid-liquid demixing by nucleation and growth of a polymer poor phase. Crystallization only played a role in the fixation of the liquid-liquid demixed structure. At increasing PLLA concentrations the demixing sequence gradually reversed to crystallization followed by liquid-liquid demixing. In these cases membranes with porous spherulites or spherulites surrounded with a cellular layer were obtained
    corecore